

A model-based systems engineering approach to simulate strategic and tactical performance in TCPED ground systems

Henry M. Mottesheard, CEA

26 February 2019

Complexity of ground stations

¹Creative Commons (CC0), Mysticsartdesign

Due to:

- Increase in data sizes²
- Resource sharing/partnerships
- Federated networks

Causes of complexity

Dynamic complexity arises because systems are:

- Constantly changing
- Tightly coupled
- Governed by feedback
- Nonlinear
- History-dependent
- Self-organizing
- Adaptive
- Characterized by trade-offs
- Counterintuitive
- Policy resistant

(Sterman³, 2002)

Strategic versus tactical operations

f(Strategic)

- Mission planning
- Mission operations
- Data processing
- Dissemination
- R&D/Simulation
- Visualization

<u>i(Tactical)</u>

- Intelligence Prep of the Env. (IPOE)
- Operations centers
- Ground stations
- Comms/Storage
- Wargaming
- Common operating picture

<u>r(Example)</u>

- SPAWAR (MTC2)
- SPAWAR (MOC)/NGA (NOC)
- NAVO/NGA
- NAVO/NGA
- ONR (METOC)/NGA (A.I.)
- SPAWAR (CANES)/NGA (GEOINT Search & Retrieval, GEOINT Broker)

- *r*(Example) is one of many interagency collaborations.
- How many more collaborative events are currently ongoing?
- What are the explicit and implied relationships when interacting with dynamic and disperse ground systems?

Current modeling techniques

- Collection
- Concurrent users
- Link-failure -
- Prioritization
- Processing power
- Orbitology
- Throughput

⁴Public Domain Photography

- Different models are currently used to monitor discrete relationships among ground components
- Great for tactical monitoring and root cause analysis of failures
- Certain models can be grouped to monitor similar discrete activities

Effectiveness versus efficiency

	Randers	Richardson and Pugh	Roberts, et. al.	Wolstenholme	Sterman
	(1980)	(1981)	(1983)	(1990)	(2000)
Stages	Conceptualization	Problem definition	Problem definition	Diagram construction and analysis	Problem articulation
		System conceptualization	System conceptualization		Dynamic hypothesis
	Formulation	Model formulation	Model representation	Simulation phase (stage 1)	Formulation
	Testing	Analysis of model behavior	Model behavior		Testing
		Model evaluation	Model evaluation		
	Implementation	Policy analysis	Policy analysis and model	Simulation phase	Policy formulation
		Model use	use	(stage 2)	and evaluation
		Processes			

(Luna-Reyes⁵, 2003)

- As the evolution and upgrades to ground systems occur:
 - How efficient are the upgrades being planned?
 - How effective are the upgrades?
 - How will improvement be measured (tested) prior to implementation (acquisition)?

Knowledge of change through simulations allow for improvement predictions prior to procurement.

Processes

Approved for public release, 19-303

Purposeful aggregation of functions:

- Collection
- Management
- Distribution

Conceptual data model

Logical data model

Understanding relationships for future performance impacts

Benefits of model-based performance simulations

- Provides measurement of system performance (HW/SW) based on planned operations & maintenance upgrades.
- Enables stressing of system components in a simulated environment
- Allows for virtual development and test prior to costly modifications

Future of federated ground architectures

Next Steps

- Identify collaborative organizations interested in participating
- Collect discrete data across participants
- Normalize data
- Aggregate to Collection, Management and Distribution
- Develop a prototype modeling and simulation prototype environment

Summary

- Ground systems are complex and dynamic.
- Recapitalization and new sources of data are inevitable.
- As non-linear approaches to ground system utilization evolve, how can one effectively evaluate changes?

Approved for public release, 19-303

Presentation Sources

- 1. Creative Commons (CC0), Mysticsartdesign.
- 2. Cisco Corporation. The Zettabyte Era: Trends and Analysis. 7 June 2017. Report.
- 3. Sterman, John D. System dynamics: system thinking and modeling for a complex world. Massachusetts Institute of Technology, Working Paper Series, 2002, pg. 4.
- 4. Solar System. Public Domain Photography. <u>https://publicdomainphotography.com/media.details.php?mediaID=7548</u>.
- Luna-Reyes, Luis Felipe and Deborah Lines Andersen. "Collecting and analyzing qualitative data for system dynamics: methods and models." *System Dynamics Review*. 19, 271-296, 2003.
- 6. Sterman, John D. Business dynamics: systems thinking and modeling for a complex world. McGraw Hill, 2000, pg. 145.
- 7. Meadows, Donella H., et. al. The Limits of Growth, 1972. Volkswagen Foundation. www.thwink.org/sustain/glossary/SystemDynamics.html

