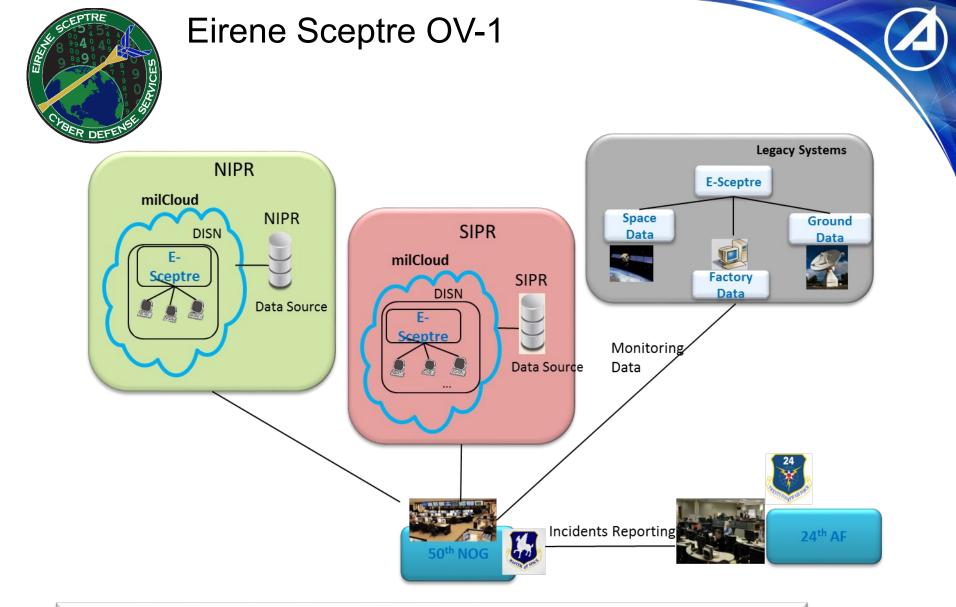
## Eirene Sceptre Cyber Defense Services

Nick Cohen Cyber Defense Solutions Department

26 February 2019



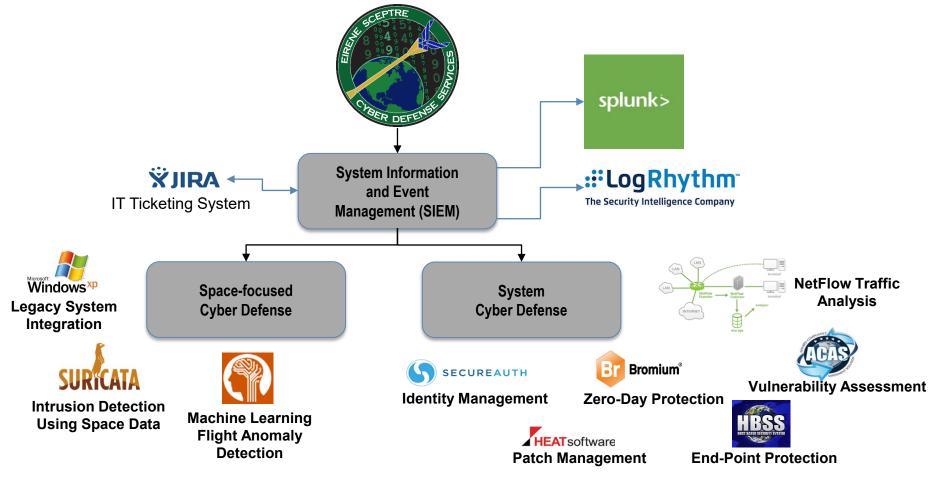

#### Overview

- Eirene Sceptre (E-Sceptre) Overview
- E-Sceptre Mission Benefits
- E-Sceptre Architecture and Capabilities

## SMC Cyber Defense Need and Approach

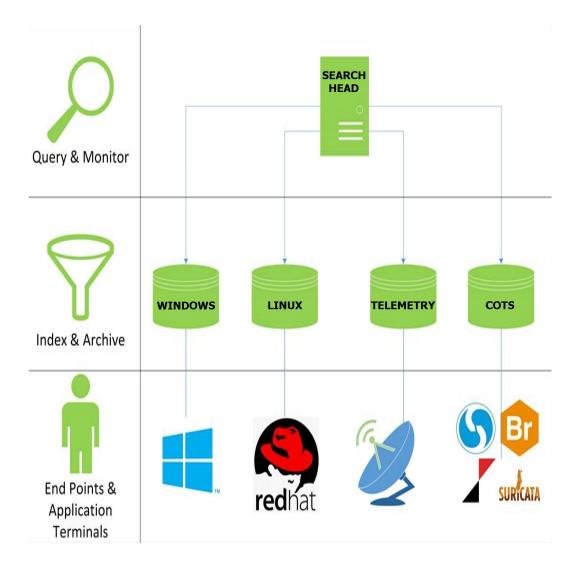


- DoD Joint Information Environment and Air Force level monitoring do not address space-specific data e.g. TT&C, health and status, commands
- Aerospace developed a tool suite called "Eirene Sceptre" for space systems
  - Knowledge of space, ground and launch systems and data
    - Implement domain specific data analysis and intelligence
    - Develop threat models for space data
    - Develop early indication and warning on space data footprint and signatures
    - Cyber anomaly resolution for space systems
  - Flexibility in deployment models, can adapt to mission requirements
    - Cloud deployment
    - Local deployment for legacy systems
- Address evolving threats to space systems and improve cyber resilience
  - Implement space-specific cyber defense on top of CDSP Tier II providers
- Built-in redundancy and scalability to overlay with AF and DoD security tools
  - When deployed on the cloud




Adaptable to mission requirements Redundancy and scalability built in to the cloud




## Eirene Sceptre Cyber Security Services Overview

Cyber Security Services provide a service stack and expertise in space systems to bridge the gap of Cyber Security Service Provider (CSSP) & space weapon systems.

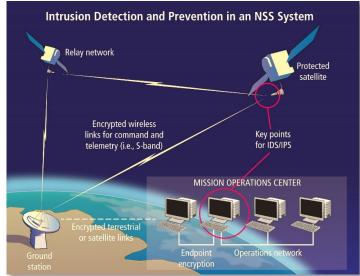




#### Eirene Sceptre – Splunk Architecture Overview



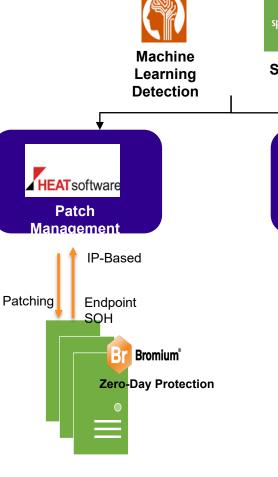



#### Accomplishments

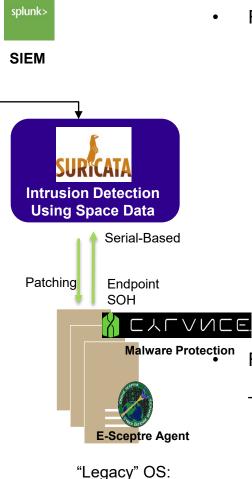
- Integrated and monitoring two mission applications, both received Interim Approval to Test (IATT)
- Participated in cyber experiments
- Demonstrations for several Air Force space programs
- Developed space-focused capabilities:
  - Tailored monitoring toolkits to scan mission data (e.g. telemetry, health & status, commanding string) for cyber analysis and intelligence
  - Developed early indication and warning on intruders using space data
  - Developing Satellite-as-a-Sensor, monitoring unexpected anomalies and early indications

## Intrusion Detection in Space Systems




- Limited characterizations of the threats, vulnerabilities and mitigations for the space segment and the space to ground interfaces
- Continuous monitoring for intrusions can alert operators to attacks in real-time
- Extensive research and experience using IDSs and IPSs in ground networks, but require adaptation to work with space systems and specialized protocols
- Sceptre IDS uses detection methods from existing IDSs such as Suricata to detect cyber attacks and feed alerts through Eirene Sceptre






## Legacy System Integration

- For "modernized" endpoints:
  - Modernized:
    Win XP onward,
    Linux, IBM AIX
    or Solaris
  - Use Heat (or ARAD/Tanium) to scan and patch the endpoints
  - Use Cylance to detect malware patterns \*



"Modern" OS:



- For "Legacy" Endpoints:
  - Legacy: DOS to Win 95, 98
  - Use Eirene Sceptre light-weight deployable agents to collect system SOH, processes information, and vulnerabilities
  - Use Cylance to detect malware patterns \*
- For serial interfaces:
  - Use Eirene Sceptre serial taps to collect system and network information



# Space Flight Anomaly Detection and Analysis

- State-of-health anomalies
- Command sequence anomalies
- Malware with unknown signature
- Abnormal data trends



### **Data-Driven Detection**

- Satellite state-of-health data and sensor telemetry provide insight into satellite behavior
  - Is the behavior normal or abnormal?
- Data-driven vs. Rules-based detection
  - Detect and predict unexpected behavior
  - Identify correlations between many variables
  - Adapt to dynamic situations
- Utilize both data-driven and rules-based approaches to capture a variety of anomalies



#### Team

#### **Eirene Sceptre Technical Team:**

- Aerospace Cyber Engineering and Protection

  - Scott Niebuhr
    Brenda Taylor
  - Kris Horton
- Michelle Yohannes
- Aerospace Engineering Technology Group
  - Andre Chen
    Pablo Settecase

  - Idriys Harris
  - Eric Frechette
  - Mike Williams
  - Denny Ly
  - Don Wonders

- Nick Cohen
  Dale Schroeder
  - Jerry Lien
  - Chibueze Ogamba
  - Dan Balderston
  - Alexandria Garland
  - Jackie Andrade



#### Acronyms

- AF Air Force
- AFNET Air Force Network
- AFSCN AF Satellite Control Network
- AMPS Automated Meteorological Processing System
- AS&W attack sensing & warning
- CDSP Cyber Defense Services Provider
- CONOPS Concept of Operations
- CM Continuous monitoring
- CSRIT Cyber Security Review & Integration Team
- CSSP Cyber Security Service Provider
- DCO Defensive Cyberspace Operations
- DISA Defense Information Systems Agency
- DMZ Demilitarized Zone
- DoD Department of Defense
- DoDAF DoD Architecture Framework
- DoDIN DoD Information Network
- ELS Enterprise Level Security
- ESD Electronic Schedule Dissemination
- FedRAMP Federal Risk and Management Program
- GPS Global Positioning System

- **IDS/IPS** Intrusion Detection/Prevention System JIE Joint Information Environment JMS JSpOC Mission System **JSpOC** Joint Space Operations Center KPP Key Performance Parameter KSA Key System Attribute LADO Launch, Anomaly, and Disposal Operations MSO Managed Services Office Network-Independent Open Source NOMS **Messaging Service** NOSCs Network operations and security centers NS4R Network Security SATCOM System Synchronization Roadmap OPIR Overhead Persistent Infrared SBIRS Space-Based Infrared System SIEM Security Information and Events Management SMC Space and Missile Systems Center TT&C Telemetry, Tracking, & Control XUI External User Interface . ULA United Launch Alliance
  - UAM User activity Monitoring

13