
© 2019 The Aerospace Corporation

Smarter Acquisition with
Agile Approaches

Session 11f

Supannika Mobasser and Jodene Sasine
The Aerospace Corporation

Approved for public release. OTR 2019-00286

2

• Agile software and system development is no longer a new topic for the
Government sector.

• Significant challenges to employing Agile methods as typically applied in the
commercial software-intensive industry.

• An additional challenge is how to smartly apply Agile concepts, not only to the
software system development, but to the whole ground system acquisition life-
cycle.

• Discussion topics
– Smarter software factory and product delivery
– Smarter program oversight and incentive structure
– Smarter quality assurance, compliance, and accreditation
– Smarter practices and other domains

• Share your Agile adoption experiences and learn from others
– Participants with all levels of Agile expertise are welcome.

Overview

3

• What is your name?
• Where are you from?
• One good thing about your experiences in Agile adoption
• One pain point about your experiences in Agile adoption
• What’s your expectation about this working group?

Introduce ourselves

4

Time Presentation and Discussion
1:00 – 1:20pm Session Overview

1:20 – 1:45 pm Agile Working Group 2018 Outbrief
Jodene Sasine, The Aerospace Corporation

1:45 – 2:10pm Scaled Agile in a traditional fixed contract world: A case from Satellite Monitoring
and Control
Enrique Fraga Moreira, GMV Aerospace and Defence

2:10 – 2:35pm Revisit on Agile Fit Check
Supannika Mobasser, The Aerospace Corporation

2:35 – 3:00pm Agile Anti-Patterns
Supannika Mobasser, The Aerospace Corporation

3:00 – 3:30pm Break

3:30 – 5:00pm General discussion
• Smarter software factory and product delivery
• Smarter program oversight and incentive structure
• Smarter quality assurance, compliance, and accreditation
• Smarter practices and other domains

Schedule

5

GSAW 2018 Outbrief

© 2019 The Aerospace Corporation

6

GSAW 2018 Outbrief

7

GSAW 2018 Outbrief

8

GSAW 2018 Outbrief

9

GSAW 2018 Outbrief

10

GSAW 2018 Outbrief

11

GSAW 2018 Outbrief

12

GSAW 2018 Outbrief

13

GSAW 2018 Outbrief

14

GSAW 2018 Outbrief

15

GSAW 2018 Outbrief

16

GSAW 2018 Outbrief

17

GSAW 2018 Outbrief

18

Time Presentation and Discussion
1:00 – 1:20pm Session Overview

1:20 – 1:45 pm Agile Working Group 2018 Outbrief
Jodene Sasine, The Aerospace Corporation

1:45 – 2:10pm Scaled Agile in a traditional fixed contract world: A case from Satellite Monitoring
and Control
Enrique Fraga Moreira, GMV Aerospace and Defence

2:10 – 2:35pm Revisit on Agile Fit Check
Supannika Mobasser, The Aerospace Corporation

2:35 – 3:00pm Agile Anti-Patterns
Supannika Mobasser, The Aerospace Corporation

3:00 – 3:30pm Break

3:30 – 5:00pm General discussion
• Smarter software factory and product delivery
• Smarter program oversight and incentive structure
• Smarter quality assurance, compliance, and accreditation
• Smarter practices and other domains

Schedule

19

Time Presentation and Discussion
1:00 – 1:20pm Session Overview

1:20 – 1:45 pm Agile Working Group 2018 Outbrief
Jodene Sasine, The Aerospace Corporation

1:45 – 2:10pm Scaled Agile in a traditional fixed contract world: A case from Satellite Monitoring
and Control
Enrique Fraga Moreira, GMV Aerospace and Defence

2:10 – 2:35pm Revisit on Agile Fit Check
Supannika Mobasser, The Aerospace Corporation

2:35 – 3:00pm Agile Anti-Patterns
Supannika Mobasser, The Aerospace Corporation

3:00 – 3:30pm Break

3:30 – 5:00pm General discussion
• Smarter software factory and product delivery
• Smarter program oversight and incentive structure
• Smarter quality assurance, compliance, and accreditation
• Smarter practices and other domains

Schedule

20

Agile Fit Check - Revisit

© 2019 The Aerospace Corporation

21

Agile Fit Check - Revisit

22

Agile Fit Check - Revisit

23

Agile Fit Check - Revisit

24

Agile Fit Check - Revisit

25

Agile Fit Check - Revisit

26

Agile Fit Check - Revisit

27

Agile Fit Check - Revisit

28

Agile Fit Check - Revisit

29

Agile Fit Check - Revisit

30

Agile Fit Check - Revisit

31

Time Presentation and Discussion
1:00 – 1:20pm Session Overview

1:20 – 1:45 pm “Agile Working Group 2018 Outbrief”
Jodene Sasine, The Aerospace Corporation

1:45 – 2:10pm “Scaled Agile in a traditional fixed contract world: A case from Satellite Monitoring
and Control”
Enrique Fraga Moreira, GMV Aerospace and Defence

2:10 – 2:35pm Revisit on Agile Fit Check
Supannika Mobasser, The Aerospace Corporation

2:35 – 3:00pm Agile Anti-Patterns
Supannika Mobasser, The Aerospace Corporation

3:00 – 3:30pm Break

3:30 – 5:00pm General discussion
• Smarter software factory and product delivery
• Smarter program oversight and incentive structure
• Smarter quality assurance, compliance, and accreditation
• Smarter practices and other domains

Schedule

32
© 2019 The Aerospace Corporation

Agile Anti-Patterns

Supannika Mobasser, Brook Cavell,
Dan Ingold, Andrew Melnick,

Joanne Succari, Eric Yuan

33

Definition

Anti-Pattern:
“Antipatterns are common solutions to common problems where the solution is ineffective and may result
in undesired consequences. An antipattern is different from bad practice when:
• It is a common practice that initially looks like an appropriate solution by ends up having bad

consequences that outweigh any benefits
• There’s another solution that is known, repeatable, and effective.
• The concept of antipatterns was inspired by the concept of design patterns, which indicate common

effective solutions to common problems.

Antipatterns were initially applied in the context of software development, but have extended to other
aspects of software engineering, organizations, and project management.

Coaches and consultants like to invoke antipatterns as a way of pointing out behavior they often see in
teams they coach and as an avenue of suggesting better patterns.”

Ref: https://www.agilealliance.org/glossary/antipattern

34

Examples of Anti-Patterns

Organizational
• Analysis paralysis: A project stalled in the analysis phase, unable to achieve support for any of the potential plans of

approach
• Groupthink: A collective state where group members begin to (often unknowingly) think alike and reject differing

viewpoints
• Micromanagement: Ineffectiveness from excessive observation, supervision, or other hands-on involvement from

management
• Mushroom management: Keeping employees "in the dark and fed manure" (also "left to stew and finally canned")
• Seagull management: Management in which managers only interact with employees when a problem arises, when

they "fly in, make a lot of noise, dump on everyone, do not solve the problem, then fly out“
• Vendor lock-in: Making a system excessively dependent on an externally supplied component

Project management
• Cart before the horse: Focusing too many resources on a stage of a project out of its sequence
• Death march: A project whose staff, while expecting it to fail, are compelled to continue, often with much overwork, by

management which is in denial
• Ninety-ninety rule: Tendency to underestimate the amount of time to complete a project when it is "nearly done"
• Overengineering: Spending resources making a project more robust and complex than is needed
• Scope creep: Uncontrolled changes or continuous growth in a project’s scope, or adding new features to the project

after the original requirements have been drafted and accepted (also known as requirement creep and feature creep)
• Brooks's law: Adding more resources to a project to increase velocity, when the project is already slowed down by

coordination overhead.

Ref: https://en.wikipedia.org/wiki/Anti-pattern#Examples

35

Anti-Patterns on New Agile Projects (1/3)

• “Do Agile” vs “Being Agile”
– Going through motions without understanding what intended outcomes should be

• Task 1 for requirements gathering, producing draft and final SRS IAW with IEEE
std 830-1998; after three months, start Task 2, build product backlog, develop
personas and user stories, sprint cadence etc.

• SOW states the contract shall follow Agile methodology, shall define sprint
cadence, etc. AND at kickoff, define the detailed capabilities and services to be
delivered at the end of each sprint

• Design review for each sprint
• Death in CDRLs (25-40% overhead from IT CAST conference study)
• Fluid Sprints – no time box or extended sprint length
• Not planned well
• Expectations that stories can move in and out or that sprint stays open if work is

not completed
– Recommendation

• Be Agile, follow Agile manifesto values, study Agile lessons learned

36

Anti-Patterns on New Agile Projects (2/3)

• Scrum-but : “we’re doing Scrum, but we…” [do something that is completely
the opposite of what it says to do in Scrum]

– Examples: Extensive up-front design, Large User Stories (all use cases covered), Lots
of hand-offs (versus cross-functional team)

• Agile-on-the-fly: If teams are new to Agile, it’s recommended that they adopt it
properly first, then try and experiment with it once they’ve got the hang of it.

• Recommendation
– Need training, mindset change, full team (including management) buy-in, on-going

coaching

37

Anti-Patterns on New Agile Projects (3/3)

• Assuming agile planning is entirely ad hoc and as-you-go
– Agile planning is intended to be flexible, but not chaotic
– One program planned “Releases,” but had only the vaguest notion of what those

Releases would contain
• Resulting in lack of structure and priority in their sprint planning

– Recommendation
• Planning should be oriented to achieve a Minimum Viable Product or Minimum

Operational Capability (focus on delivering features or capabilities rather than
functional components) then enhance that capability incrementally in subsequent
sprints and releases

• NEVER be in a state where the product isn’t working. Plan EVERY iteration to
enhance and deliver additional mission capabilities.

• Not building in quality
– Not enough testing, especially regression testing, preferably automated regression

testing
– Recommendation

• Start with the end in mind, use acceptance criteria, definition of done
• Embed testers as part of the development team

38

Anti-Patterns on the Product Backlog Management
or Requirements Management (1/3)

• Time/effort wasters
– Not spending time during backlog management - impacts Sprint Planning efficiency
– Too many items or items too old – clutter and difficult to prioritize
– Review/estimate everything (and too early) - unnecessary effort by team
– Too much information or acceptance criteria – leave room for discussion with the team

for new perspectives and negotiation on scope; leaves team less engaged if
everything is spelled out

– Recommendation
• Organize backlog grooming sessions to ensure that items are ready for next Sprint
• Review/estimate the top priority items that are likely to be addressed in the next 1-

2 sprints

39

Anti-Patterns on the Product Backlog Management
or Requirements Management (2/3)

• Prioritization issues
– Prioritization by proxy – someone else (external to Product Owner) dictates the

priorities; no accountability of Product Owner
– Prioritize full project up front
– Recommendation

• Appoint a Product Owner with authority
• Priorities should expect to adjust as you observe working software and assess how

much is enough

40

Anti-Patterns on the Product Backlog Management
or Requirements Management (3/3)
• Failing to organize and prioritize the backlog by feature

– Item is horizontal component versus end-to-end feature
• May lead to completed components, but not operational or not delivering mission

value
• Composition of a backlog item

– Items not decomposed from Themes or Epics
• Assign a non-functional requirement to be developed in one Sprint

– E.g. scalability requirement can not be achieved in one Sprint

• Recommendation
– Factor in or bake in non-functional requirements from day one
– Start from requirements decomposition. Organize requirements in a capability-driven

structure
– Helpful to be able to filter by an epic and see what the features have been defined and

help to convey scope of a particular release

41

Anti-Patterns on Architecture and Design

• Architecture and Design are somewhat orthogonal to development
methodologies

– Agile doesn't work well with stovepipes or monolithic hardware/software systems
– Recommendation

• Modularity, layered architecture, abstracted dependencies
• Small, self-contained, testable feature decomposition
• Start with Just Enough Architecture

• Several space and ground software are developed by engineers from other
domains without software engineering background

– Recommendation
• Be cognizant of technical debt
• Start by defining some principles, tenets and architectural decisions upfront

• Lack of Government-owned software architecture
– Recommendation

• Define interface specifications

42

Anti-Patterns on Testing

• Accepting manual testing as suitable and effective
– Recommendation

• Design for test
• Use Test-Driven Development at the unit level
• Use Behavior-Driven Development at the integration level
• Continue to enhance automated functional tests throughout the lifecycle

• Accepting automated unit testing covers everything
– Recommendation

• Need a good balance between automated and manual testing
• Not integrating Test with Development

– Recommendation
• Test as you go, continual testing, automated regression testing

43

Anti-Patterns on the Software Development Team

• Product Backlog Grooming done privately
– Recommendation

• Full team must be involved to ensure a shared understanding of the “why” and
“what” since anyone on the team should be able to pick up a story and work on it

• Fill Sprint Backlog with 100% of the team capacity
– Lead to “I’m busy” attitude and no time to help others
– Recommendation

• Leave room for collaboration and team support
• Recommend to identify a “Story Shepherd” who ensures the tasks and task

dependencies are clear and moving along within the sprint

44

Anti-Pattern on Project Management (1/2)

• Planning failures
– Pre-planning iterations as though using traditional planning (IMS)
– Failing to plan releases in terms of expected features/capabilities
– Creating a too-detailed IMS, and evaluating progress (and EV) against it
– Recommendation

• May continue to use high-level IMS
• Use more of Product Roadmap and Architecture Runway

– Consider dependencies and constraints when developing Release Plan

• Team organization failures
– Teams organized by functional decomposition, rather than by Feature
– Recommendation

• Encourage multi-disciplinary teams organized by Feature/Epic
• Focus on flat organization structure to speed up decision-making process

45

Anti-Pattern on Project Management (2/2)

• Tasks too large that it sits in “In Progress” the whole sprint
– “Yesterday I worked on X and today I plan to work on X”

• Team doesn’t really know what you are doing or whether progress is being made
• It’s not apparent if you are blocked or stuck on a problem that possibly someone

else can help with
• Impacts dependent subtasks and likely the larger story

– Recommendation
• Scrum master should pay attention to progress, shared vision, and potential

impediments
• Ineffective retrospective

– No action or follow-up taken to remedy issues
• Repetition of issues, deteriorating morale

– Team less likely to raise concerns if they feel nothing will change
– Recommendation

• Team should identify actionable, measurable, and controllable items
• Put action items in the backlog
• Review past action items with the team

46

Schedule

Time Presentation and Discussion
1:00 – 1:20pm Session Overview

1:20 – 1:45 pm Agile Working Group 2018 Outbrief
Jodene Sasine, The Aerospace Corporation

1:45 – 2:10pm Scaled Agile in a traditional fixed contract world: A case from Satellite Monitoring
and Control
Enrique Fraga Moreira, GMV Aerospace and Defence

2:10 – 2:35pm Revisit on Agile Fit Check
Supannika Mobasser, The Aerospace Corporation

2:35 – 3:00pm Agile Anti-Patterns
Supannika Mobasser, The Aerospace Corporation

3:00 – 3:30pm Break

3:30 – 5:00pm General discussion
• Smarter software factory and product delivery
• Smarter program oversight and incentive structure
• Smarter quality assurance, compliance, and accreditation
• Smarter practices and other domains

47

Smarter Software Factory

• Do you agree with the following minimum essential elements of a software
factory?

– Continuous integration
– Continuous testing
– Tool chain with maximum automation
– Reusable code

• How can we make it smarter?
– Templates : Pre-made application elements with placeholders for arguments.
– Recipe : Automate procedures in routine tasks
– Architecture guidance and patterns
– IV&V with machine learning?
– Data-driven
– Cloud-based?
– Continuous deployment

• Should we / can we do that? Deploy to where?

48

• Do you agree with the following minimum essential elements of Cybersecurity
approach?
– Automated Testing/Test Reporting
– Automated Security Scanning
– CI/CD integrated with source code scans (security and quality)
– All deployment candidates scanned prior to deployment

• How can we make it smarter?
– Automated compliance monitoring

Smarter Cybersecurity Compliance

49

• Do you agree with the following minimum essential elements of certification
and accreditation process?
– Plan for early and upfront involvement
– Define as part of acceptance criteria and definition of done

• How can we make it smarter?
– Composable certification [DARPA 2018]

• Use the evaluated criteria of a subsystem as evidence in a system evaluation
– Automated evaluation [DARPA 2018]

• Produce compelling, checkable assurance arguments backed by evidence
– Data-driven evidence

Smarter Certification and Accreditation

50

• How can the government test be performed early and often?
– How early?
– How often?

• Sprint-level, quarterly, annually, one-time

• How can we make it smarter?

Smarter Government-Led Testing

51

• Do you agree with the following minimum essential elements of product
delivery?
– Evolutionary and incremental delivery of capability
– Design, develop, and plan for continuous re-hosting
– Produce the software in the operational environment

• How can we make it smarter?

Smarter Product Delivery

52

• Do you agree with the following minimum essential elements of mission
assurance?
– Govt has online access to contractor’s real-time repository or development

environment
• Need to balance with micro management

– Real-time dashboard
– Wiki-based documentation
– As-built & incremental deliverables
– Govt participates in Sprint/Iteration Reviews
– Frequent system-level integration (at minimum monthly)

• How can we make it smarter?

Smarter Program Oversight

53

• “Be careful what you wish for”

• From Govt to contractor
– What to incentivize?

• Specific goal? Stretch goal? Innovation? Schedule? Quality?
– What not to incentivize?

• From high level management to development team
– What to incentivize?

• Specific goal? Stretch goal? Innovation? Schedule? Quality?
– What not to incentivize?

Smarter Incentive structure

54

• What would be a smarter approach for the Government teams to be involved?
– Government program management

– Operators / Users

– Government sustainment team

– Certifier / Appraiser

Smarter Government Involvement

55

• MBSE – Model-based Systems and Software Engineering
– Such as requirements, diagrams, simulations, prototype
– “Model-first, code-later” vs “lo-fi from developers, then hi-fi by modelers”

• How can we make it smarter?

Smarter Agile and MBSE

56

• Challenges
– Do you need to complete the requirements and design before coding?
– What do the milestones or synchronization points look like?
– Simulation-in-the-loop

• How can we make it smarter?

Smarter Agile and Hardware-intensive development

57

[Boehm and Turner 2003] Barry Boehm and Richard Turner, “Balancing Agility and Disciplines”, Addison Wesley 2003

[DARPA 2018] Raymond Richards, “Technical challenges in certifying software for military systems”, SERC
workshop: Continuous Development and Deployment of Military Capabilities, November 27-
28, 2018

[GAO 2011] GAO, “Critical Factors Underlying Successful Major Acquisitions”, GAO Report-12-7,
October 2011

[Hayes, et.al 2016] William Hayes, Mary Ann Lapham, Suzanne Garcia-Miller, Eileen Wrubel, and Peter Capell,
“Scaling Agile Methods for Department of Defense Programs”, CMU/SEI-2016-TN-005,
December 2016

[Miller 2014] Suzanne Miller, “The Readiness & Fit Analysis: Is Your Organization Ready for Agile?”,
CMU/SEI white paper 2014-019-001-90981, April 2014

[Mobasser 2017] Supannika Mobasser, “Agile Fit Check Framework for Government Acquisition Programs”,
CSER 2017

[Mobasser 2018-2] Supannika Mobasser, “Agile Fit Check: Is your program fit for Agile”, SERC workshop:
Continuous Development and Deployment of Military Capabilities, November 27-28, 2018

[Mobasser and Sasine 2018] Supannika Mobasser and Jodene Sasine, “GSAW 2018 Working Group Outbrief - Achieving
Resiliency with Agile Methods”, GSAW, February 26 – March 1, 2018

[Modigliani and Chang 2014] Peter Modigliani and Su Chang, “Defense Agile Acquisition Guide: Tailoring DoD IT
Acquisition Program Structures and Processes to Rapidly Deliver Capabilities”, MITRE.
March 2014

[VersioneOne 2018] The 12th Annual State of Agile Report, VersionOne, April 2018

[Welby 2013] Stephen Welby, “Thinking About Agile in DoD”, AFEI Agile for Government Summit,
November 2013

Reference

58

Back up charts

59

“We are uncovering better ways of developing software by doing it and helping others
do it. Through this work we have come to value:

That is, while there is value in the items on the right, we value the items on the left more.”

Manifesto for Agile Software Development
http://www.agilemanifesto.org/

[Ref: Agile manifesto http://www.agilemanifesto.org/]

Individuals & interactions over Processes & tools
Working software over Comprehensive documentation

Customer collaboration over Contract negotiation
Responding to change over Following a plan

Agile development promotes
• Adaptive planning
• Evolutionary development and delivery
• Time-boxed iterative approach
• Rapid and flexible response to change

60

1. Our highest priority is to satisfy the customer through early and continuous delivery of valuable
software.

2. Welcome changing requirements, even late in development. Agile processes harness change
for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months, with a
preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.
5. Build projects around motivated individuals. Give them the environment and support they need,

and trust them to get the job done.
6. The most efficient and effective method of conveying information to and within a development team

is face-to-face conversation.
7. Working software is the primary measure of progress.
8. Agile processes promote sustainable development. The sponsors, developers, and users should

be able to maintain a constant pace indefinitely.
9. Continuous attention to technical excellence and good design enhances agility.
10. Simplicity- the art of maximizing the amount of work not done--is essential
11. The best architectures, requirements, and designs emerge from self-organizing teams.
12. At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its

behavior accordingly.

12 principles of Agile software development

Ref: https://agilemanifesto.org/principles.html

61

Agile Methodologies – Scrum

0. Program Backlog

2. Daily feedback:
a. Teams get status & problem
alerts via daily 10-15 minute
stand-up.

b. Continuous integration and
Automated testing of code
means that code is checked in,
built, and regression tested at
least once every day

c. The Government Team has
access to up-to-minute, web-
based metrics, provide quick
feedback

0. Requirements are used to
create a program backlog,
a prioritized list of software
features.

Each feature gets a relative
difficulty/time rating in story
points. Each feature is
assigned its priority level.

The Government team
approves the size and
priority of each feature.

1. Sprint Backlog for each
monthly sprint, developers
commit to delivering a set of
features captured in a sprint
backlog.

The Government team,
represented by the Product
Owner, approves the
selected sprint backlog.

3. Monthly feedback with
Sprint Review for both
development team and the
Government team.

Feedback on planning accuracy
and progress-to-date.
Features aren’t counted as
Done until they are integrated
& tested successfully.

Acceptance Testing.

The development team
performs Sprint retrospective.

Features
weighted by
story points
and sorted by
prioritization level

1. Sprint Backlog

2. Daily Feedback

3. Monthly
Feedback with
Sprint Reviews

Four-Week Sprints (Time-Boxed) Used to Design,
Develop, Integrate, & Test Selected Software Features

4045

25 40

45 25 40

45

Approved by
Product Owner

x-Week Sprint

62

Agile Methodologies
Scrum: the most popular Agile methodology in the commercial sector

Agile

Dynamic Systems
Development Method

Extreme Programming (XP)

Scrum

Feature Driven
Development
(FDD)

Lean Kanban

[State of Agile Survey Report, VersionOne, 2018]

Scaled Agile Framework (SAFe)

Large Scale Scrum
(LeSS)

Nexus

DevOps

	Smarter Acquisition with �Agile Approaches�
	Overview
	Introduce ourselves
	Schedule
	GSAW 2018 Outbrief
	GSAW 2018 Outbrief
	GSAW 2018 Outbrief
	GSAW 2018 Outbrief
	GSAW 2018 Outbrief
	GSAW 2018 Outbrief
	GSAW 2018 Outbrief
	GSAW 2018 Outbrief
	GSAW 2018 Outbrief
	GSAW 2018 Outbrief
	GSAW 2018 Outbrief
	GSAW 2018 Outbrief
	GSAW 2018 Outbrief
	Schedule
	Schedule
	Agile Fit Check - Revisit
	Agile Fit Check - Revisit
	Agile Fit Check - Revisit
	Agile Fit Check - Revisit
	Agile Fit Check - Revisit
	Agile Fit Check - Revisit
	Agile Fit Check - Revisit
	Agile Fit Check - Revisit
	Agile Fit Check - Revisit
	Agile Fit Check - Revisit
	Agile Fit Check - Revisit
	Schedule
	Agile Anti-Patterns�
	Definition
	Examples of Anti-Patterns
	Anti-Patterns on New Agile Projects (1/3)
	Anti-Patterns on New Agile Projects (2/3)
	Anti-Patterns on New Agile Projects (3/3)
	Anti-Patterns on the Product Backlog Management or Requirements Management (1/3)
	Anti-Patterns on the Product Backlog Management or Requirements Management (2/3)
	Anti-Patterns on the Product Backlog Management or Requirements Management (3/3)
	Anti-Patterns on Architecture and Design
	Anti-Patterns on Testing
	Anti-Patterns on the Software Development Team
	Anti-Pattern on Project Management (1/2)
	Anti-Pattern on Project Management (2/2)
	Schedule
	Smarter Software Factory
	Smarter Cybersecurity Compliance
	Smarter Certification and Accreditation
	Smarter Government-Led Testing
	Smarter Product Delivery
	Smarter Program Oversight
	Smarter Incentive structure
	Smarter Government Involvement
	Smarter Agile and MBSE
	Smarter Agile and Hardware-intensive development
	Reference
	Back up charts
	Manifesto for Agile Software Development�http://www.agilemanifesto.org/�
	12 principles of Agile software development
	Agile Methodologies – Scrum
	Agile Methodologies�Scrum: the most popular Agile methodology in the commercial sector

