@narterAcquisition with
| Agile Approaches

" Session 11f
, 1

Supannika Mobasser and Jodene Sasine
The Aerospace Corporation

Approved for public release. OTR 2019-00286

© 2019 The Aerospace Corporation

Overview

* Agile software and system development is no longer a new topic for the
Government sector.

* Significant challenges to employing Agile methods as typically applied in the
commercial software-intensive industry.

* An additional challenge is how to smartly apply Agile concepts, not only to the
software system development, but to the whole ground system acquisition life-
cycle.

* Discussion topics
— Smarter software factory and product delivery
— Smarter program oversight and incentive structure
— Smarter quality assurance, compliance, and accreditation
— Smarter practices and other domains

* Share your Agile adoption experiences and learn from others
— Participants with all levels of Agile expertise are welcome.

Introduce ourselves

* What is your name?

* Where are you from?

* One good thing about your experiences in Agile adoption
* One pain point about your experiences in Agile adoption
* What’s your expectation about this working group?

Schedule

Time Presentation and Discussion

1:00 — 1:20pm Session Overview

»1 :20 — 1:45 pm Agile Working Group 2018 Outbrief
Jodene Sasine, The Aerospace Corporation

1:45 - 2:10pm Scaled Agile in a traditional fixed contract world: A case from Satellite Monitoring
and Control
Enrique Fraga Moreira, GMV Aerospace and Defence
2:10 — 2:35pm Revisit on Agile Fit Check
Supannika Mobasser, The Aerospace Corporation
2:35 - 3:00pm Agile Anti-Patterns
Supannika Mobasser, The Aerospace Corporation
3:00 — 3:30pm Break

3:30 — 5:00pm General discussion
« Smarter software factory and product delivery
« Smarter program oversight and incentive structure
» Smarter quality assurance, compliance, and accreditation
» Smarter practices and other domains

GSAW 2018 Outbrief

Working Group Outbrief

Ground System Architectures Workshop
Session 11D
Achieving Resiliency with Agile Methods

Supannika Mobasser and Jodene Sasine,
The Aerospace Corporation

Approved for public release. OTR 2018-00491

© 2019 The Aerospace Corporation

GSAW 2018 Outbrief

Ground System Architectures Workshop

Session 11D
Participants
» Lauren Ballard, Nesbitt Discovery » Peggy Lou, Aerospace
Academy « Paul Mallon, Aerospace
* Lyle Barner, JPL « Ugur Melihslizue, TAI
» Emily Brison, Nesbitt Discovery + Sue Mobasser, Aerospace
Academy

* Phuong Phan, Navy

+ Jodene Sasine, Aerospace
+ Jim Schier, NASA

« Scott Smith, SAIC

* Bruce Steiner, Aerospace

» Doug Buettner, Aerospace

« Jay Bugenhagen, NASA

» Brook Cavell, Aerospace

* Roger Claypoole, Aerospace
* Eric Cohen, Lockheed Martin * Michael Thimblin, Aerospace

« Enrique Fraga, GMV * Rolando Ventura, Harris
» Judy Kelley, ASRC Federal + Russ Wolfer, USG

GSAW 2018 Outbrief

Ground System Architectures Workshop
Session 11D

Schedule

Time Presentation and Discussion

1:00 — 1:30pm Session Overview
1:30 — 2:00pm “Agile ground segment software development: cheaper, faster and better”
Enrique Fraga Moreira, GMV Aerospace and Defence
2:00 - 2:30pm “SCRUB for Peer Review of Static Code Analysis Results”
Lyle Barner, Jet Propulsion Laboratory
2:30 - 3:00 pm General discussion - |
« Agile Battle Rhythm : who, what, when, where, why, how many
3:00 - 3:30pm Break

3:30 - 5:00pm General discussion — |
« Agile Architecture: build “-ilities™ and resiliency in
« Agile Enterprise: cultural and paradigm shift
« Agile Mission Assurance: trust but real-time verify
« Agile Supporting Infrastructure: required product and process resources

GSAW 2018 Outbrief

Ground System Architectures Workshop
Session 11D

Agile Battle Rhythm

« Who?

— Default: Scrum Product Owner, Scrum Master, Developers and Testers

— Team composition? Any special team, such as system engineering team, integration team,
program management, customer liaison, Integrated Product (Process) Team (IPT)?

+ Embed Architect, SMEs, Requirements Engineer, SE into Agile team
+ Developers knowledgeable on cybersecurity or have a dedicated Cyber engineer
+ Release Train Engineer — manage multiple teams, release tempo
* Human Factors Engineer — overall program, involve user communities
— Who is your Product Owner?

+ Government — requires training/education; challenging due to frequent Govt rotation
(consider if 2-3 month overlap is possible for cross training)

+ Contractor — ensure regular communication between Customer and Product Owners
+ Contractor Product Owner needs Govt counterpart to synchronize

— Required certifications for Product Owner? Scrum Master?
* Must be experienced

GSAW 2018 Outbrief

Ground System Architectures Workshop
Session 11D

Agile Battle Rhythm

« What?

— Default: Sprint Planning, Daily Stand-up, Sprint Demo, Sprint Retro,
Story Grooming?

« Scrum of scrums

» Pre-release / Post-release (build / increment / iteration) Reviews
— How to collaborate across teams?

» Utilize Release Train Engineers
— Any additional / tailored activities for the new roles?

« Govt counterpart to Contractor Product Owner

» Govt engineer/developer embedded/deployed into Contractor Agile
team that Govt pays for

GSAW 2018 Outbrief

Ground System Architectures Workshop
Session 11D

Agile Battle Rhythm

« When?
— Sprint length? Release length? Number of Sprint per Release?
+ Sprint length: 2-4 weeks
+ Release length:
— Greenfield: quarterly (minor); & months (major)
— Enhancements: monthly
— Stakeholders constrained: 9 months
* Number of sprints per release: depends on release length
— Any empty/buffer Sprint? At least one per release
— Milestone reviews?
+ Build / Increment / lteration Review, TRR, RRD, RRT
+ Agile metrics at each sprint review (i.e., velocity)
— Useful — burndown, burnup, velocity, features delivered, technical debt
— Frequency of system-level demo? Monthly
— Are you using Integrated Master Schedule (IMS)? Any alternative?
+ EVM at release/iteration level * Most productive is 80% assigned
* Portfolio report (Jira) + PMI: 1 day is 6 hours
+ SEER-SEM (agile)

10

GSAW 2018 Outbrief

Ground System Architectures Workshop

Where?

Session 11D
Agile Battle Rhythm

Default: collocated team members
Challenges on distributed teams? Mitigations?
Do you have collocated users?
+ If not, how do you collaborate? How often?
— Visit contractor site at appropriate times — open hot desk
— Online access to Contractor dashboard
» Be careful on micromanagement
— Skype, VTC helps but things lost in translation (facial, body language)
— Need periodic person-to-person contact
Development environments? Demo environments? Staging or Operational-like environments?
+ System demo done in test or ops-like environment; depends on program
+ Leave development environment for development
+ Utilize Docker
+ Watch out for ‘it works on my machine’

11

GSAW 2018 Outbrief

Ground System Architectures Workshop
Session 11D

Agile Battle Rhythm

« Why?
— Default: Four Manifesto Values and Twelve Principles
— What works, what does not work?

+ Responding to change — sometimes means no change, expectation
management, design for potential changes

« For fixed price, Govt collaboration needs to be well understood
— Be transparent, timely
« Welcome changing requirements — typically no but tweak is ok

Individuals & interactions over Processes & tools . Satisfy the customer

. Welcome changing requirements

. Deliver working software frequently

. Stakeholders work together daily throughout the project
. Motivated individuals

. Face-to-face conversation

- Working software is the primary measure of progress.
. Sustainable development

- Continuous attention to technical excellence

10. Simplicity

11. Self-organizing teams

12. Continuous Improvement

Working software over Comprehensive documentation

Customer collaboration over Contract negotiation

Responding to change over Following a plan

W00 =~ O o LR =

12

GSAW 2018 Outbrief

Ground System Architectures Workshop
Session 11D

Agile Battle Rhythm

« How Many?
— Default: 4-9 people per team
« No more than 10 members
— Ratio between Product Owner and teams?
+ 1 Product Owner to 1-2 teams (max)
— Ratio between Scrum Master and teams?
« 1 Scrum Master to 1 team

13

GSAW 2018 Outbrief

Ground System Architectures Workshop
Session 11D

Agile Architecture / Architected Agile
Build “-ilities” and Resiliency in

+ Approaches: Design-as-you-go, Emergent Design, Architecture Runway, Enterprise
Architecture, Release Train

What is your approach in developing architecture and design in Agile development?
— Knowledge of Interfaces and Interoperability

— Embedded Systems Engineering (including architect) team
— Design in resilience; need team members educated on what resilience means

— Architecture Runway — have SE/Design teams work ahead of development team
to flush out design prior

+ How do you address non-functional requirements?

— Part of Definition of Done; every commit checks (mostly automated); peer review,
performance testing

+ How do manage dependency between components?
— Roadmap needs to be clear with dependencies represented

14

GSAW 2018 Outbrief

15

Ground System Architectures Workshop

Session 11D
Pain Points (1/2)

Buy-in at Middle Management

Use short term incentives; MVP for short term win

Culture Shock

Leader is no longer the boss, acts as a facilitator
Transition: Processes, Metrics, Tools, Infrastructure, Role &
Responsibilities

Hire an Agile Coach

Executive involved at the beginning

Government: increased workload tremendously

Contractor: matrix management of agile developers created risk
across multiple projects

Agile is more costly in the beginning; cheaper in “total cost of
ownership”

GSAW 2018 Outbrief

16

Ground System Architectures Workshop
Session 11D

Pain Points (2/2)

« System Acceptance
— Minimum at Feature and System level
— Full System Test at the end
» Better way to adopt Agile, Process Improvement
» Midstream Agile Adoption
« RFP, FAR, Acquisition Milestones
« Scaling
» Interface to different processes
« System enhancement vs Greenfield development
« EVM, Project Planning, Quality Management
» Requirements Management

GSAW 2018 Outbrief

Ground System Architectures Workshop
Session 11D

Good idea

» Infrastructure and Resources must be ready (e.g., DevOps)
« Continuous Planning, Continuous Code Integration & Test
« Agile experience required; more important than certification
« Empower the team; but balance with checks and controls

« Release Engineer: Align integration team and system engineering
team

« Assign 10% margin for reengineering

« All parties need to be Agile

17

Schedule

Time Presentation and Discussion

1:00 — 1:20pm Session Overview

1:20 — 1:45 pm Agile Working Group 2018 Outbrief
Jodene Sasine, The Aerospace Corporation

1:45 - 2:10pm Scaled Agile in a traditional fixed contract world: A case from Satellite Monitoring
= and Control
Enrique Fraga Moreira, GMV Aerospace and Defence
2:10 — 2:35pm Revisit on Agile Fit Check
Supannika Mobasser, The Aerospace Corporation
2:35 - 3:00pm Agile Anti-Patterns
Supannika Mobasser, The Aerospace Corporation
3:00 — 3:30pm Break

3:30 — 5:00pm General discussion
« Smarter software factory and product delivery
« Smarter program oversight and incentive structure
» Smarter quality assurance, compliance, and accreditation
» Smarter practices and other domains

18

Schedule

Time Presentation and Discussion

1:00 — 1:20pm Session Overview

1:20 — 1:45 pm Agile Working Group 2018 Outbrief
Jodene Sasine, The Aerospace Corporation

1:45 - 2:10pm Scaled Agile in a traditional fixed contract world: A case from Satellite Monitoring
and Control
Enrique Fraga Moreira, GMV Aerospace and Defence

-2:10 — 2:35pm Revisit on Agile Fit Check

Supannika Mobasser, The Aerospace Corporation

2:35 - 3:00pm Agile Anti-Patterns
Supannika Mobasser, The Aerospace Corporation

3:00 — 3:30pm Break

3:30 — 5:00pm General discussion
« Smarter software factory and product delivery
« Smarter program oversight and incentive structure
» Smarter quality assurance, compliance, and accreditation
» Smarter practices and other domains

19

Agile Fit Check - Revisit

THE AEROSPACE CORPORATION

Q‘ Agile Fit Check

Is your program fit for Agile?
-

Supannika K'Mobasser, PhD
~The Aerospace Corporation

" SERC workshop:

Continuous Development and
Deployment of Military Capabilities
November 27-28, 2018

Approved for public release. OTR 2019-00052

© 2019 The Aerospace Corporation

Agile Fit Check - Revisit

21

Outline

* Agile Fit Check assessment
— Motivation
— Literature Review
— Agile Fit Check
— Retrospective on common process selection criteria
* Open discussion
— Improvements and impediments of agile adoption
* DevOps
* Government Roles
* User Involvement
* Agile at the enterprise level

Agile Fit Check - Revisit

22

Agile software development in military domain

* Itis a big challenge for large-scale government projects to follow a purely agile
software development approach due to several constraints such as

— Barriers to customer-developer-user collaboration
— Insufficient agile knowledge within the Program Office and its demands on the office
— Scalability impacts on size, coordination, synchronization, criticality

— Difficulty for Customers to speak as one voice, especially after series of requirements
volatility

* Several government “agile” programs adopt agile-like processes. Common
characteristics are
— Time-box, frequent deliveries, continuous integration and testing
— lterative and incremental development
— Very high collaboration, very high User involvement

Agile Fit Check - Revisit

23

Motivation

* There is growing trend of using an agile approach in system and software
engineering projects in the industry

— Be agile, not do Agile

* How do we know that a given project / a given proposal would be a good fit for
an agile development?

* What are the evaluation criteria?
* What are the risks of adopting an incompatible process?

Agile Fit Check - Revisit

24

Boehm’s Balancing Agility and Discipline
[Boehm and Turner 2003]

* Determine the relative suitability of agile or plan-driven methods

Five critical decision factors
Scale ratings for each factor

Spider diagram to identify risk of agile adoption

Suggestions of risk mitigation

Parsonna|
(% Lovel 1B) (% Level 2and 3)

a0l 15
30 4 20
20| 28
Criticality) Crynamism
{Loss due to impact of defects) 10,57 30 (% Requirements-change/montn)

Sizo
(Mumber of parsonnel)

Culture
(% Thriving on chaos vs. order)

Parsonnal

(o level 18) (% Level 2 and 3)

40T 15

q0 1 20

Criticality
(Loss due fo impact of defects)

singe

Lives Ure

Furds Dlscretonary
Funds Comfat

Size
(Numbar of paisanna()

Dynamism
(% Requirements-change/month

ib)

10
Culture
(% Thriving on chaos vs. order)

Agile Fit Check - Revisit

25

MITRE - Traditional Versus Software Development
. - . -
Agile Considerations Process Model Selection
16 assessment areas to consider when adopting agile 8 assessment areas to consider when adopting agile
Tatse 1 Traditionsl Werss Agie Coe
Consider Agile Practices AssosTmETt Areas Consider Traditional Practices . -
Becurementscant b el efed " o Criteria for Software Development
" Aegquirements | Reguirsments have been relatively well
upframt s ta 3 e operations| Stahili defined by the aperationd sponsor, H
enviranrment. N " Process Model Selection
Requirsmantz can ba dectmposed nt Reipiiremesits Recpinements are tightly inkegrated
small tasks bo support derative -
developmart. Diwvisibility and are difficult te decompose,)) , . .
s el 7 == e s o PMOs take on risk if processes don't fit their program.
ard require frequent capshility upgrades allow iterative devedopment or lacks - = - s =
<1 yearl. the ability ba sbsorb frequent updates, Environment & Situation Agile Indicator
Uzers cannat zuppart fequent Is the team for the work unit collocated or raphically dis ed? Collocated
Pl (N LB e aeouiapn e SRper
'qde:h;'*’;g: "% er the target and User csnnot be How many teams design, code & test, and integrate the effort? Fewer is Better
- atoes sad,
Are you willing to rapidly change the system based on customer Feedback more
Program scope Is mostly limited to the . . .
opleaton e whie g eeing | Progamscape | PO SOME O b i feedback? effective
InfrastruciLre.) Can incremental deliveries provide useful capability? Easier to execute
The government is responsible far Syshens. The gavernment does not want 1o can
primary systams irtagration. Intagration systerns Itegration resporsiltias. Is there a fixed set of requirements against a fixed schedule? Less hacKLou it
Capabilities are operational at a besic Program supports a critical mission in management ben
leswel, with =aome defects that can be Systemi Criticality | which defects may result in boss of life Less prioritization
addressed in fuiure relesses, or high security risks. Are all requirements the same priority? (Closed Scope) banefit
Industry has relevant domain experience: Deweloper Agle development expertiseis
and Aglle develipment expertise. Expestise unavailabée of lacks domain experiende, Are change requests to requiremants handied by the team or a Team management
Pragram cifice has Agile training, Gowernment Program office has no Agle experience separate organization?
experience, andlor coaches. Expertise ar funding for agile training or ooaches,
Program contract strategy supperts shart Contracting Corfract stratesy cannek support shart Was tha overall program schedule astimated assuming rolling-wave Rolling Wave
agle devebapment timelines Timedings Agile devebopment timelines planning, or detailed bottom-up estimata?
Dffica of tha Secretary of Dafenza
Program Executive Dffice (PEC) ar PO50| or Service &couisitien Executive - . - . . - - -
suborinato hac authority for most | Level of Overddght | [SAF] = the Wiloetons Dociian Project Specific Decision: Reject One-Size-Fits-All Models
program decizsions. Awthority |MOK) and requires most
decisions to be mada at that lewal. —
Development can be effectively ransged WiEny government stakeholders wil be ;‘f.:‘“‘z‘:"".'r‘;;l‘:,"""“' Dhsritnation Saberrsnt & - Approved for b ks by 05 on 111552013, BR Cone 8 14-E4004 applie. Dotriion i uimited
by a small cros=-functional gavernment Team Site inwolved in the saftware developrment
team. and dedision-making process.
Stakehalders phrysically locsted across
Government and developers can rraliple locations and have limited
collabarate frequentty ana effectivery, Collaborion DEncweth T suppon frequent
collaberation
Onear 3 few contractor|s) or teams can MYy CONEraCtors are reguined to
perform cevslopment, LR develop program elements
Extansive devslopmant and operational
Program can leverage test infrastructure besting is concducted serially follewing
and automated tests, and testars are Tast Ervironment | davelopmert. Limied resources and
active throughout development. toels avalable to conguct parallel
dewelapment testing.
Leadarsfip scthely suppens Agle Leadarshipprafers a traditional
develapment practices and provides “top Leadership =8 _
COWEr™ 16 USe MON-Tracitional processes Suppart 'UEI‘P‘O[IITE"\‘EE[DIWEFHUFFJNHY
and methods., with Agile practices.

Agile Fit Check - Revisit

26

Agile Fit Check Framework

* Leveraged lessons learned from several agile-related publications, agile
research studies, agile workshops / working groups, and agile programs

* Can be used to check the fithess of a proposal to use an agile development
method on a program

* Does not give a yes/no answer on whether a program should use an agile
development process

* |dentifies potential impediments of adopting an agile approach for a particular
system or risks of following an incompatible process

Agile Fit Check - Revisit

27

Agile Fit Check Criteria

* Checks for agile fithess based on criteria in three major categories:

1.

System’s characteristics

* Q: Is the nature of the system applicable to agile development?
— Project scope, criticality, volatility, integration interval
Government’s level of commitment
* Q: Is the Government ready to support an agile development?
— Leadership support, contract type, stakeholders’ representatives
Contractor’s level of commitment
* Q: Is the offeror or contractor ready to support an agile development?
— Collaboration, team organization

Agile Fit Check - Revisit

[Mobasser 2017]

1. System Criticality
2. Requirements Volatility
3. Requirements Formality and Detail

4. Requirements Decomposition

5. Deployment Timelines
6. System Integration Interval

7. Program Scope

System's Characteristics

1. System
Cgiticality

2. Requirements

7. Program scope Volatility

3. Requirements
Formality and
Detail

6. Length of formal
build cycle

5. Deployme
Timelines

f. Requirements
Decomposition

8. User Involvement 5

Agile Fit Check Criteria

1. Leadership Support
2. Contracting Strategy

3. Government Expertise
4_Level of Oversight

5. Collabaration

6. End User Involvement

Government's Level of Commitment

1. Leadership
Ssupport

. Contracting
Strategy

. Govemment

5. Collaboration .
Expertise

4. Level of Oversight

The following 19 factors can be used to determine the fithess of a certain project for an agile approach and
can help identify the risks of adopting an incompatible process.

System’s Characteristics Government’s Level Commitment Contractor’'s Level Commitment

1. Developer Expertise
2. No. of Contractor(s)
3. Project Team Size

4_Supporting Infrastructure and
environment

5. Team Composition

6. Use of automated testing

Contractor's Level of Commitment

1. Developer
E:ipertise

6. Use of "
Automated c 2. Mo. o

Testing ontractor(s)
5. Team 3. Project Team

Composition Size

4. Supporting
Infrastructure and
environment

28

Agile Fit Check - Revisit

Boehm and Tumer 2003 GAD 2011

[5)

(9

Comparison of Process Selection Criteria

Maodigliani and Chang 2014
[16)

Hayes, et al 2016
(8)

Systemn Criticality Criticality [system Criticality
Requiremants Volatility Dynamism Fixed requirements against schadule [Requirements Stability Ermnbrace requirements changs
Requiremants Formality and
Detail
Requiremants Decomposition [Requirements Divisibility Batch Size
Deployment Timelines Incremental deliveries Interim delivery enabled
System Integration Interval synchronized Cadence
Program Scope Program Scope
Leadership Support |Leadership support |Leadership support Senior support fior agile
Contracting Strategy Appropriate contract type
Government Expertise Parsonnel kstaff knowledze and skills lsowernment Expertise |appropriately trained staff
[Program staff role and - Oversight-supported agile principles

Level of Oversight lemgagement lLevel of Oversizht Product Owner Role - Compatible rhythm of owersight
Collaboration [Regular communication icollaboration Collaboration enabled
Uzer Involiement [User involvement [User Involvement Uzer Role
Developer Expertise Personnel [Developer Expertise |agile/lean-competent staff
Mo. of Contractor|s) Icomplexity
Project Team Size Size Fewer teams [Team Size [Team Size
Supporting Infrastructure and
environment 4gile-supportive environmeant
Team Composition [table team
Use of Automated Testing

User Timelines

JSOVErMMENT 35 system intesrator

icontracting Timelines

- Positive change histary
- Trusting envirenment
Test environment - Fail learn fast
Culture ‘Wwilling to rapid change

specialization of Roles

Iteration Length

Release Definition

Collocated team

Co-located teams

Requirements handled by the team

Rolling-wave planning

Prioritizable requirements

[User participate in testing

[EPO prioritized requirements

ufficient funding

Project funding secursd

10

Clear program goals

Defined success strategies

Clear alignment of software and program goals
appropriate |ifecycle activities

Agile at-scale enabled

sponsors understand agile

Cascading sponsorship

External policy support

aligned incentives

4gile-supportive reward system

User and customer focus

Review goals aligned with Agile

Positive percaption of Agile by team
appropriate use of cost-size factors
Management as coaching function

Hizh trust between management and teams
sustainable development pace

Agile Fit Check - Revisit

Retrospective of Common Process Selection Criteria

Schedule

Time Presentation and Discussion

1:00 — 1:20pm Session Overview
1:20 — 1:45 pm “Agile Working Group 2018 Outbrief”
Jodene Sasine, The Aerospace Corporation
1:45 - 2:10pm “Scaled Agile in a traditional fixed contract world: A case from Satellite Monitoring
and Control”
Enrique Fraga Moreira, GMV Aerospace and Defence
2:10 — 2:35pm Revisit on Agile Fit Check
Supannika Mobasser, The Aerospace Corporation
»2:35 — 3:00pm Agile Anti-Patterns
Supannika Mobasser, The Aerospace Corporation
3:00 — 3:30pm Break

3:30 — 5:00pm General discussion
« Smarter software factory and product delivery
« Smarter program oversight and incentive structure
» Smarter quality assurance, compliance, and accreditation
» Smarter practices and other domains

31

5%.; Agile Anti-Patterns

Supannika Mobasser; Bt‘pOk” Cavell,
,Dan Ingold, Andrew Melfﬁck,
Joanne Succari, Eric Yuan

© 2019 The Aerospace Corporation

Definition

Anti-Pattern:

“Antipatterns are common solutions to common problems where the solution is ineffective and may result
in undesired consequences. An antipattern is different from bad practice when:

* |t is a common practice that initially looks like an appropriate solution by ends up having bad
consequences that outweigh any benefits

* There’s another solution that is known, repeatable, and effective.

* The concept of antipatterns was inspired by the concept of design patterns, which indicate common
effective solutions to common problems.

Antipatterns were initially applied in the context of software development, but have extended to other
aspects of software engineering, organizations, and project management.

Coaches and consultants like to invoke antipatterns as a way of pointing out behavior they often see in
teams they coach and as an avenue of suggesting better patterns.”

Ref: https://www.agilealliance.org/glossary/antipattern

33

Examples of Anti-Patterns

Organizational

Analysis paralysis: A project stalled in the analysis phase, unable to achieve support for any of the potential plans of
approach

Groupthink: A collective state where group members begin to (often unknowingly) think alike and reject differing
viewpoints

Micromanagement: Ineffectiveness from excessive observation, supervision, or other hands-on involvement from
management

Mushroom management: Keeping employees "in the dark and fed manure" (also "left to stew and finally canned")

Seagull management: Management in which managers only interact with employees when a problem arises, when
they "fly in, make a lot of noise, dump on everyone, do not solve the problem, then fly out®

Vendor lock-in: Making a system excessively dependent on an externally supplied component

Project management

34

Cart before the horse: Focusing too many resources on a stage of a project out of its sequence

Death march: A project whose staff, while expecting it to fail, are compelled to continue, often with much overwork, by
management which is in denial

Ninety-ninety rule: Tendency to underestimate the amount of time to complete a project when it is "nearly done"
Overengineering: Spending resources making a project more robust and complex than is needed

Scope creep: Uncontrolled changes or continuous growth in a project’s scope, or adding new features to the project
after the original requirements have been drafted and accepted (also known as requirement creep and feature creep)

Brooks's law: Adding more resources to a project to increase velocity, when the project is already slowed down by
coordination overhead.

Ref: https.//fen.wikipedia.org/wiki/Anti-pattern#Examples

Anti-Patterns on New Agile Projects (1/3)

* “Do Agile” vs “Being Agile”
— Going through motions without understanding what intended outcomes should be

e Task 1 for requirements gathering, producing draft and final SRS IAW with IEEE
std 830-1998; after three months, start Task 2, build product backlog, develop
personas and user stories, sprint cadence etc.

e SOW states the contract shall follow Agile methodology, shall define sprint
cadence, etc. AND at kickoff, define the detailed capabilities and services to be
delivered at the end of each sprint

* Design review for each sprint

e Death in CDRLs (25-40% overhead from IT CAST conference study)
* Fluid Sprints — no time box or extended sprint length

* Not planned well

* Expectations that stories can move in and out or that sprint stays open if work is
not completed

— Recommendation
* Be Agile, follow Agile manifesto values, study Agile lessons learned

35

Anti-Patterns on New Agile Projects (2/3)

* Scrum-but : “we’re doing Scrum, but we...” [do something that is completely
the opposite of what it says to do in Scrum]

— Examples: Extensive up-front design, Large User Stories (all use cases covered), Lots
of hand-offs (versus cross-functional team)

* Agile-on-the-fly: If teams are new to Agile, it's recommended that they adopt it
properly first, then try and experiment with it once they’ve got the hang of it.

* Recommendation

— Need training, mindset change, full team (including management) buy-in, on-going
coaching

36

Anti-Patterns on New Agile Projects (3/3)

* Assuming agile planning is entirely ad hoc and as-you-go
— Agile planning is intended to be flexible, but not chaotic
— One program planned “Releases,” but had only the vaguest notion of what those
Releases would contain
* Resulting in lack of structure and priority in their sprint planning
— Recommendation

* Planning should be oriented to achieve a Minimum Viable Product or Minimum
Operational Capability (focus on delivering features or capabilities rather than
functional components) then enhance that capability incrementally in subsequent
sprints and releases

* NEVER be in a state where the product isn’t working. Plan EVERY iteration to
enhance and deliver additional mission capabilities.
* Not building in quality
— Not enough testing, especially regression testing, preferably automated regression
testing

— Recommendation
* Start with the end in mind, use acceptance criteria, definition of done
* Embed testers as part of the development team

37

Anti-Patterns on the Product Backlog Management
or Requirements Management (1/3)

* Time/effort wasters

38

Not spending time during backlog management - impacts Sprint Planning efficiency
Too many items or items too old — clutter and difficult to prioritize
Review/estimate everything (and too early) - unnecessary effort by team

Too much information or acceptance criteria — leave room for discussion with the team
for new perspectives and negotiation on scope; leaves team less engaged if
everything is spelled out

Recommendation
* Organize backlog grooming sessions to ensure that items are ready for next Sprint

* Review/estimate the top priority items that are likely to be addressed in the next 1-
2 sprints

Anti-Patterns on the Product Backlog Management
or Requirements Management (2/3)

* Prioritization issues

— Prioritization by proxy — someone else (external to Product Owner) dictates the
priorities; no accountability of Product Owner

— Prioritize full project up front
— Recommendation
* Appoint a Product Owner with authority

* Priorities should expect to adjust as you observe working software and assess how
much is enough

39

Anti-Patterns on the Product Backlog Management
or Requirements Management (3/3)

* Failing to organize and prioritize the backlog by feature
— Item is horizontal component versus end-to-end feature

* May lead to completed components, but not operational or not delivering mission
value

* Composition of a backlog item
— Items not decomposed from Themes or Epics

* Assign a non-functional requirement to be developed in one Sprint
— E.g. scalability requirement can not be achieved in one Sprint

* Recommendation
— Factor in or bake in non-functional requirements from day one

— Start from requirements decomposition. Organize requirements in a capability-driven
structure

— Helpful to be able to filter by an epic and see what the features have been defined and
help to convey scope of a particular release

40

Anti-Patterns on Architecture and Design

* Architecture and Design are somewhat orthogonal to development
methodologies
— Agile doesn't work well with stovepipes or monolithic hardware/software systems
— Recommendation
* Modularity, layered architecture, abstracted dependencies
* Small, self-contained, testable feature decomposition
¢ Start with Just Enough Architecture
* Several space and ground software are developed by engineers from other
domains without software engineering background
— Recommendation
* Be cognizant of technical debt
* Start by defining some principles, tenets and architectural decisions upfront

* | ack of Government-owned software architecture
— Recommendation
* Define interface specifications

41

Anti-Patterns on Testing

* Accepting manual testing as suitable and effective
— Recommendation
* Design for test
* Use Test-Driven Development at the unit level
* Use Behavior-Driven Development at the integration level
* Continue to enhance automated functional tests throughout the lifecycle
* Accepting automated unit testing covers everything
— Recommendation
* Need a good balance between automated and manual testing
* Not integrating Test with Development
— Recommendation
* Test as you go, continual testing, automated regression testing

42

Anti-Patterns on the Software Development Team

* Product Backlog Grooming done privately
— Recommendation

* Full team must be involved to ensure a shared understanding of the “why” and
“‘what” since anyone on the team should be able to pick up a story and work on it

* Fill Sprint Backlog with 100% of the team capacity
— Lead to “I'm busy” attitude and no time to help others
— Recommendation
* Leave room for collaboration and team support

* Recommend to identify a “Story Shepherd” who ensures the tasks and task
dependencies are clear and moving along within the sprint

43

Anti-Pattern on Project Management (1/2)

* Planning failures
— Pre-planning iterations as though using traditional planning (IMS)
— Failing to plan releases in terms of expected features/capabilities

— Creating a too-detailed IMS, and evaluating progress (and EV) against it
— Recommendation

* May continue to use high-level IMS
* Use more of Product Roadmap and Architecture Runway
— Consider dependencies and constraints when developing Release Plan

* Team organization failures

— Teams organized by functional decomposition, rather than by Feature
— Recommendation

* Encourage multi-disciplinary teams organized by Feature/Epic
* Focus on flat organization structure to speed up decision-making process

44

Anti-Pattern on Project Management (2/2)

* Tasks too large that it sits in “In Progress” the whole sprint
— “Yesterday | worked on X and today I plan to work on X”
* Team doesn’t really know what you are doing or whether progress is being made

* |[t's not apparent if you are blocked or stuck on a problem that possibly someone
else can help with

* Impacts dependent subtasks and likely the larger story

— Recommendation
* Scrum master should pay attention to progress, shared vision, and potential

impediments
* |Ineffective retrospective

— No action or follow-up taken to remedy issues
* Repetition of issues, deteriorating morale

— Team less likely to raise concerns if they feel nothing will change

— Recommendation
* Team should identify actionable, measurable, and controllable items
* Put action items in the backlog
* Review past action items with the team

45

Schedule

Time Presentation and Discussion

1:00 — 1:20pm Session Overview

1:20 — 1:45 pm Agile Working Group 2018 Outbrief
Jodene Sasine, The Aerospace Corporation

1:45 — 2:10pm Scaled Agile in a traditional fixed contract world: A case from Satellite Monitoring
and Control
Enrique Fraga Moreira, GMV Aerospace and Defence
2:10 — 2:35pm Revisit on Agile Fit Check
Supannika Mobasser, The Aerospace Corporation
2:35 - 3:00pm Agile Anti-Patterns
Supannika Mobasser, The Aerospace Corporation
3:00 — 3:30pm Break

3:30 — 5:00pm General discussion
» Smarter software factory and product delivery
= » Smarter program oversight and incentive structure
» Smarter quality assurance, compliance, and accreditation
» Smarter practices and other domains

46

Smarter Software Factory

* Do you agree with the following minimum essential elements of a software
factory?
— Continuous integration
— Continuous testing
— Tool chain with maximum automation
— Reusable code

* How can we make it smarter?
— Templates : Pre-made application elements with placeholders for arguments.
— Recipe : Automate procedures in routine tasks
— Architecture guidance and patterns
— V&V with machine learning?
— Data-driven
— Cloud-based?
— Continuous deployment
* Should we / can we do that? Deploy to where?

47

Smarter Cybersecurity Compliance

48

Do you agree with the following minimum essential elements of Cybersecurity
approach?

— Automated Testing/Test Reporting

— Automated Security Scanning

— CI/CD integrated with source code scans (security and quality)

— All deployment candidates scanned prior to deployment

How can we make it smarter?
— Automated compliance monitoring

Smarter Certification and Accreditation

* Do you agree with the following minimum essential elements of certification
and accreditation process?
— Plan for early and upfront involvement
— Define as part of acceptance criteria and definition of done

* How can we make it smarter?
— Composable certification [DARPA 2018]
* Use the evaluated criteria of a subsystem as evidence in a system evaluation

— Automated evaluation [DARPA 2018]
* Produce compelling, checkable assurance arguments backed by evidence

— Data-driven evidence

49

Smarter Government-Led Testing

* How can the government test be performed early and often?

— How early?
— How often?
* Sprint-level, quarterly, annually, one-time

* How can we make it smarter?

50

Smarter Product Delivery

* Do you agree with the following minimum essential elements of product
delivery?
— Evolutionary and incremental delivery of capability
— Design, develop, and plan for continuous re-hosting
— Produce the software in the operational environment

* How can we make it smarter?

51

Smarter Program Oversight

52

Do you agree with the following minimum essential elements of mission
assurance?

— Govt has online access to contractor’s real-time repository or development
environment

* Need to balance with micro management
— Real-time dashboard
— Wiki-based documentation
— As-built & incremental deliverables
— Govt participates in Sprint/lteration Reviews
— Frequent system-level integration (at minimum monthly)

How can we make it smarter?

Smarter Incentive structure

* “Be careful what you wish for”

* From Govt to contractor
— What to incentivize?
* Specific goal? Stretch goal? Innovation? Schedule? Quality?
— What not to incentivize?
* From high level management to development team
— What to incentivize?
* Specific goal? Stretch goal? Innovation? Schedule? Quality?
— What not to incentivize?

53

Smarter Government Involvement

* What would be a smarter approach for the Government teams to be involved?
— Government program management

— Operators / Users

— Government sustainment team

— Certifier / Appraiser

54

Smarter Agile and MBSE

* MBSE - Model-based Systems and Software Engineering
— Such as requirements, diagrams, simulations, prototype
— “Model-first, code-later” vs “lo-fi from developers, then hi-fi by modelers”

* How can we make it smarter?

55

Smarter Agile and Hardware-intensive developmen

* Challenges
— Do you need to complete the requirements and design before coding?
— What do the milestones or synchronization points look like?
— Simulation-in-the-loop

* How can we make it smarter?

56

Reference

[Boehm and Turner 2003]

[DARPA 2018]

[GAO 2011]

[Hayes, et.al 2016]

[Miller 2014]

[Mobasser 2017]

[Mobasser 2018-2]
[Mobasser and Sasine 2018]

[Modigliani and Chang 2014]

[VersioneOne 2018]

[Welby 2013]

57

Barry Boehm and Richard Turner, “Balancing Agility and Disciplines”, Addison Wesley 2003

Raymond Richards, “Technical challenges in certifying software for military systems”, SERC
workshop: Continuous Development and Deployment of Military Capabilities, November 27-
28, 2018

GAO, “Critical Factors Underlying Successful Major Acquisitions”, GAO Report-12-7,
October 2011

William Hayes, Mary Ann Lapham, Suzanne Garcia-Miller, Eileen Wrubel, and Peter Capell,
“Scaling Agile Methods for Department of Defense Programs”, CMU/SEI-2016-TN-005,
December 2016

Suzanne Miller, “The Readiness & Fit Analysis: Is Your Organization Ready for Agile?”,
CMU/SEI white paper 2014-019-001-90981, April 2014

Supannika Mobasser, “Agile Fit Check Framework for Government Acquisition Programs”,
CSER 2017

Supannika Mobasser, “Agile Fit Check: Is your program fit for Agile”, SERC workshop:
Continuous Development and Deployment of Military Capabilities, November 27-28, 2018

Supannika Mobasser and Jodene Sasine, “GSAW 2018 Working Group Outbrief - Achieving
Resiliency with Agile Methods”, GSAW, February 26 — March 1, 2018

Peter Modigliani and Su Chang, “Defense Agile Acquisition Guide: Tailoring DoD IT
Acquisition Program Structures and Processes to Rapidly Deliver Capabilities”, MITRE.
March 2014

The 12t Annual State of Agile Report, VersionOne, April 2018

Stephen Welby, “Thinking About Agile in DoD”, AFEI Agile for Government Summit,
November 2013

Back up charts

Manifesto for Agile Software Development

http://www.agilemanifesto.org/

“We are uncovering better ways of developing software by doing it and helping others

do it. Through this work we have come to value:

That is, while there is value in the items on the right, we value the items on the left more.”

59

Individuals & interactions over
Working software over
Customer collaboration over

Responding to change over

Processes & tools
Comprehensive documentation
Contract negotiation

Following a plan

Agile development promotes

Adaptive planning

Evolutionary development and delivery
Time-boxed iterative approach

Rapid and flexible response to change

[Ref: Agile manifesto http://www.agilemanifesto.org/]

12 principles of Agile software development

60

_

Our highest priority is to satisfy the customer through early and continuous delivery of valuable
software.

Welcome changing requirements, even late in development. Agile processes harness change
for the customer's competitive advantage.

Deliver working software frequently, from a couple of weeks to a couple of months, with a
preference to the shorter timescale.

Business people and developers must work together daily throughout the project.

Build projects around motivated individuals. Give them the environment and support they need,
and trust them to get the job done.

The most efficient and effective method of conveying information to and within a development team
is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers, and users should
be able to maintain a constant pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.
Simplicity- the art of maximizing the amount of work not done--is essential
The best architectures, requirements, and designs emerge from self-organizing teams.

At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its
behavior accordingly.

Ref: https://agilemanifesto.org/principles.html

Agile Methodologies — Scrum

0. Program Backlog

Features
weighted by
story points
and sorted by
prioritization level

0. Requirements are used to
create a program backlog,
a prioritized list of software
features.

Each feature gets a relative
difficulty/time rating in story
points. Each feature is
assigned its priority level.

The Government team
approves the size and
priority of each feature.

61

1. Sprint Backlog

Approved by
Product Owner

2. Daily Feedback

o

 x-Week Sprint

3. Monthly
Feedback with
Sprint Reviews

Four-Week Sprints (Time-Boxed) Used to Design,
Develop, Integrate, & Test Selected Software Features

A

[
1. Sprint Backlog for each

monthly sprint, developers
commit to delivering a set of
features captured in a sprint
backlog.

The Government team,
represented by the Product
Owner, approves the
selected sprint backlog.

2. Daily feedback:

a. Teams get status & problem
alerts via daily 10-15 minute
stand-up.

b. Continuous integration and
Automated testing of code
means that code is checked in,
built, and regression tested at
least once every day

c. The Government Team has
access to up-to-minute, web-
based metrics, provide quick
feedback

3. Monthly feedback with
Sprint Review for both
development team and the
Government team.

Feedback on planning accuracy
and progress-to-date.

Features aren’t counted as
Done until they are integrated
& tested successfully.

Acceptance Testing.

The development team
performs Sprint retrospective.

Agile Methodologies

Scrum: the most popular Agile methodology in the commercial sector

AGILE METHODS AND
PRACTICES

<1% DSDM/Atern

<1% XP

<1% Agile Unified Process (AgileUP)
‘\ // 2% | Don't Know
~

Scrum

Nexus 5% Other ———_
Leaw [
Kanban 5L .
e Agile
8., Methodologies Used
Del/apf Feature D}"lven Scrumban Scrum and Scrum/XP Hybrid (68%)
continue to :_Je_t'wenmost COI’T"I’T]O: a_c_lllle
Development 8 . Cr;z;ﬁnci)g;tlﬁ;%fa used by respondents
Dynamic Systems (F ‘DD) Custom Hybrid v/
Development Method odole

methodologies)

Large Scale Scrum

oy —
(LeSS) 10.

Scrum/xP

Hybrid
Scaled Agile Framework (SAFe)

Extreme Programming (XP)

[State of Agile Survey Report, VersionOne, 2018]

62

	Smarter Acquisition with �Agile Approaches�
	Overview
	Introduce ourselves
	Schedule
	GSAW 2018 Outbrief
	GSAW 2018 Outbrief
	GSAW 2018 Outbrief
	GSAW 2018 Outbrief
	GSAW 2018 Outbrief
	GSAW 2018 Outbrief
	GSAW 2018 Outbrief
	GSAW 2018 Outbrief
	GSAW 2018 Outbrief
	GSAW 2018 Outbrief
	GSAW 2018 Outbrief
	GSAW 2018 Outbrief
	GSAW 2018 Outbrief
	Schedule
	Schedule
	Agile Fit Check - Revisit
	Agile Fit Check - Revisit
	Agile Fit Check - Revisit
	Agile Fit Check - Revisit
	Agile Fit Check - Revisit
	Agile Fit Check - Revisit
	Agile Fit Check - Revisit
	Agile Fit Check - Revisit
	Agile Fit Check - Revisit
	Agile Fit Check - Revisit
	Agile Fit Check - Revisit
	Schedule
	Agile Anti-Patterns�
	Definition
	Examples of Anti-Patterns
	Anti-Patterns on New Agile Projects (1/3)
	Anti-Patterns on New Agile Projects (2/3)
	Anti-Patterns on New Agile Projects (3/3)
	Anti-Patterns on the Product Backlog Management or Requirements Management (1/3)
	Anti-Patterns on the Product Backlog Management or Requirements Management (2/3)
	Anti-Patterns on the Product Backlog Management or Requirements Management (3/3)
	Anti-Patterns on Architecture and Design
	Anti-Patterns on Testing
	Anti-Patterns on the Software Development Team
	Anti-Pattern on Project Management (1/2)
	Anti-Pattern on Project Management (2/2)
	Schedule
	Smarter Software Factory
	Smarter Cybersecurity Compliance
	Smarter Certification and Accreditation
	Smarter Government-Led Testing
	Smarter Product Delivery
	Smarter Program Oversight
	Smarter Incentive structure
	Smarter Government Involvement
	Smarter Agile and MBSE
	Smarter Agile and Hardware-intensive development
	Reference
	Back up charts
	Manifesto for Agile Software Development�http://www.agilemanifesto.org/�
	12 principles of Agile software development
	Agile Methodologies – Scrum
	Agile Methodologies�Scrum: the most popular Agile methodology in the commercial sector

