
1

Raging Incrementalism—System Engineering for
Continuous Change

Michael M. Gorlick
The Aerospace Corporation

El Segundo, California
310.336.8661

gorlick@aero.org

Abstract— For nearly every technology there is adoubling
period over which the price/performance ratio of that technol-
ogy improves by a factor of 2. Careful examination of long-
term historical trends reveals that these doubling periods are
themselves shortening every decade; implying that the rate of
technical progress ishyperexponential. If we take the 1990s as the
benchmark decade of technical progress, then the first 25 years
of the 21st century will see the equivalent of 100 years of 1990s
progress. Hyperexponential progress has profound implications
for all facets of system procurement, design, development, deploy-
ment, management, improvement, operations, maintenance, and
modernization. We offer an approach to system engineering—
raging incrementalism—that embraces and leverages hyperexpo-
nential change to construct systems in far less time and with
dramatically lower life cycle costs than traditional methods. We
discuss the rationale for raging incrementalism, its programmatic
and system engineering principles, and its influence on total
system cost from concept to disposal.

Focus Issues:
• Standards and interoperability
• Off-the-shelf
• Open-source components
• Program management, including risk and life-cycle issues
• System integration
• Ground communication architectures
• Operations and sustainment concepts

I. I NTRODUCTION

To many, change—be it in the form of requirements creep,
funding rates, or the ongoing evolution of technology—is
the enemy of systems development. System developers and
customers lock out change by freezing requirements, guaran-
teeing funding, and commiting early to key technologies. For
shame—ignoring change is as foolhardy as ignoring gravity.
Change is now so pervasive that it constitutes a fundamental
driver for systems large and small. Not only is change the
one and only constant of systems acquisition and deployment,
but the pace, degree, and breadth of change is growing at
a hyperexponentialrate. In this paper we offer a perspective
on systems engineering that embraces change as a force for
system improvement and suggest a methodology that leverages
change to deliver quality systems at lower costs and in less
time than traditional methods.

Consider recent technical history. For several technologies
relevant to space ground systems—obvious examples include
computation, data storage, and communications—there is a

technology-dependentdoubling period(measured in months)
over which the price/performance ratio of that technology
improves by a factor of 2. To illustrate, the doubling periodof
modern processors—such as the Intel Pentium or the Power
PC—is approximately 18 months. In fact, processor technol-
ogy exhibits two related and concurrent doubling periods in
that roughly every 16–24 monthsboth the gate density and
clock speeds double, yielding a4-fold performance improve-
ment every doubling period. Similar and equally dramatic
(but different) doubling periods are observed for dynamic
memory, disk drive storage density, network bandwidth, router
switching speeds, and raw fiberoptic carrying capacity. In
each instance cited above, the doubling period is less than 24
months—and in some cases, markedly less. For example, until
recently disk-drive density was doublingevery 6–8 months;
however, industry analysts predict a period of far more modest
improvement as vendors reach the limits of present technology
and retreat to the laboratory to explore promising advances.
Quiescent periods are not uncommon in the historical perfor-
mance curves of technologies; however, they rarely last longer
than 12–24 months, and are merely a brief respite prior to
another extended period of exponential improvement.

Exponential performance improvement is change with a
vengence—and merely a harbinger of things to come. Careful
examination of the long-term historical trends for just about
any relevant technology one cares to name strongly suggests
that the rate of change isaccelerating—doubling every decade
[1]. In other words, taken in the large, and over numerous
disparate disciplines, the overall technical progress in each
decade of the 21st century will be double that of the prior
decade. If we set the last decade of the 20th century as the
“benchmark” decade of technical progress, the period 2001–
2010 will see the equivalent of 20 years of 1990s progress,
the decade following, 2011–2020, will see the equivalent of
40 years of 1990s progress, and so on. In the first 25 years of
this century we will experience as much technical progress as
was seen in the whole of the prior century. When 2100 rolls
around our technical mark will rest at the equivalent of20,000
years of unrelenting late 20th century technical progress.

When measured over a span of years, the overall rate
of technical improvement ishyperexponential, collapsing
into months what might have taken years just one or two
decades ago. Hyperexponential progress is not merely “more”
change—it is change of an order that obliterates everything

2

in its path in a breathtakingly short period of time. The very
thought of hyperexponential progress calls into question the
wisdom of executing programs whose lifespan, from concep-
tion to disposal, is more than a few years. Furthermore, it is
not just our own national technical ability that is improving
at this nearly inconceivable rate—our competitors and adver-
saries exploit the same technical elements as we.1 When high
performance processors, commercial grade switching gear,and
spools of fiberoptic cable can be purchased with a credit card
via the web or at your neighborhood “computer mall,” then
the barrier to entry has been reduced to nothing at all.

Hyperexponential progress has profound implications for all
facets of system procurement, design, development, deploy-
ment, management, improvement, operations, maintenance,
and modernization. From this perspective modern procurement
practices are, in effect, superbly designed engines of delay
and obsolesence whose sole goal is deliver a system that is
irrelevant to the threats of the day, obsolete long before itis
deployed, and horrifically expensive to sustain and operate.
Battling hyperexponential progress is futile. Far better to
embrace and exploit nonstop progress to improve systems. In
other words, constant, unending, accelerating progress isthe
ally, not the enemy, of system engineers and program man-
agers. I introduce here a new system engineering discipline—
raging incrementalism—expressly designed to exploit hyper-
exponential technical progress to improve all aspects of ground
systems from “lust to dust.”

The remainder of the paper is organized as follows. Sec-
tion II sketches some of the programmatic foundations of
raging incrementalism. Section III outlines the software engi-
neering principles that make possible rapid, highly-incremental
system development in a manner that preserves system flexibil-
ity and ease of adaptation. Section IV remarks on the life cycle
costs of raging incrementalism while Section V describes two
ongoing experiments in the development of raging incremental
systems.

II. PROGRAMMATIC PRINCIPLES

As a programmatic discipline, raging incrementalism em-
phasizes brief development cycles (on the order of weeks to a
few months), rapid prototyping and experimentation, and the
virtues of the “good enough.” Hyperexponential progress is
simultaneously terrifying and exhilarating (like riding aworld-
class roller coaster). One of its benefits and principal virtues
is a neverending supply of “golden screws”—piece parts so
powerful that they fundamentally reshape the process and prac-
tice of construction. Commodity processors, network routers,
inexpensive, specialized add-on cards (such as megasample-
rate analog/digital converters), open source software, and the
like permit a small team to construct a substantial system ina
matter of a few weeks or months. Rapid prototyping grounds
the system in reality, forcing the developers to confront (or
at least acknowledge) challenges of performance, function,
or utility. Brief development cycles reduce the burden of
program management and offer important benefits, including

1Consider the recent adoption by China of Linux as the “national operating
system.”

observable and measurable progress, lower costs, increased
team cohesion, and greater customer satisfaction.

More subtly, brief development cycles and modest funding
firmly bound expectations and near-term goals. In a world
of onrushing progress, “the betteris the enemy ofthe good
enough,” meaning that one can rely on hyperexponential
progress to resolve those issues that are peripheral or incidental
to the task at hand. A brute-force solution that leverages golden
screws is probably “good enough” for now; the next cycle
of development can focus on other germane improvements.
In any case, the chances are excellent that someone else
somewhere else sometime soon will solve (at no cost) the
problem that your team has just set aside, and when that
solution appears it can be quickly incorporated in the next
incremental development cycle.

Rapid progress has many manifestations; in particular, the
ascension of electronic commerce. This is relevant to raging
incrementalism in a profound way, since it alters—forever
and irrevocably—the provisioning of systems. Given the ever-
astonishing advances in the price/performance of commodity
hardware, it is ridiculous and wasteful to procure any hardware
before it is absolutely required. “Just-in-time” procurement
is as important to raging incrementalism as brief periods of
development. When hardware is required, purchase it over
the web and have it delivered to your doorstep. Doing so
permits your project to have the most cost-effective hardware
precisely when it is most needed. The engineering principles
of raging incrementalism (discussed in Section III) ensure
that new hardware can be transparently substituted for old as
better-performance, higher-functionality components become
available.

III. SOFTWARE ENGINEERING PRINCIPLES

As an engineering discipline, raging incrementalism rests
upon the exploitation of commodity hardware, open source
software, open standards, peering architectures, and the archi-
tectural style of REpresentational State Transfer (REST) [2].
From a systems perspective the goal of raging incrementalism
is to preserve system modularity and flexibility above all
else—for the simple reason that if the previous increment has
degraded the ability of the system to adapt to change, then
succeeding increments will be more complex, more fragile,
and more difficult to implement and deploy.

The underpinnings of raging incrementalism are the tri-
umverate of commodity hardware, open source software, and
open standards. The extraordinary explosion of inexpensive,
versatile, high-performance computing hardware means that,
for all practical purposes, computation is free and the hardware
costs for most systems are so low as to be irrelevant.2 Many
bedeviling system problems may be resolved (or at least
pushed aside) by brute force computation. Raging incremental-
ism dicates that—wherever practicable—problems should be
solved in software, since commodity open source software
can be rehosted at no cost and older hardware can either

2A 1U rack server containing a 1 GHz processor, 256 MB of memory, 20
GB of disk storage and a 100 Mbs ethernet port can be purchasedover the
web for $500.

3

be repurposed or discarded outright.3 Reliance on commodity
hardware harnesses the power of hyperexponential progress
to one’s advantage. The pressure on commodity hardware
vendors is harsh and unrelenting as they must accomodate
improvements as quickly as possible or be forced into insol-
vency by competitors. Their suffering is your joy, since slightly
older high-performance hardware can be purchased on demand
at bargain basement prices—a perfect example of exploiting
change for the purposes of incremental development.

Open source software allows system developers to harness
change in another way. No one project, much less an indi-
vidual, can pace hyperexponential change. However, “many
hands make light work,” and the burden of accomodating
accelerating change is shared among the inhabitants of the
“creative commons.” The creative commons, that landscape of
independent open-source developers, harnesses the firestorm
of hyperexponential change by creating software piece parts,
“golden bits,” that revolutionize, in much the manner of
commodity hardware, the process and practice of system con-
struction. Software technology, like its hardware counterpart,
is also characterized by an ever-shortening doubling period.
However, while the software doubling period lags behind
that for hardware, and is more reasonably measured in years
rather than months, it is counterbalanced by the size of the
community and the low (nonexistent) barrier to entry. Anyone
with a personal computer and an Internet connection (of
any sort) may contribute to the ever-widening pool of open-
source software, and a plentitude of Internet resources (web
sites and repositories) are devoted to open-source. Further,
hyperexponential change guarantees that the doubling period
for software advances will quickly (in the long view) shrink
to timespans of few months.

Finally, the size and diversity of the open-source community
guarantees that many developers tackle many problems in
many ways in many places many times. While much open-
source software is utter rubbish, the gems (Apache, gcc, Linux,
MySQL, and Python, to name but a few), are powerful engines
of progress whose effects are multiplicative. Raging incremen-
talism suggests that programs develop just the software that
they need at just at the moment they need it and no sooner.
Premature development is wasteful and needlessly duplicative,
since someone else may solve your problem for you at no
cost. In a nontrivial way, Google is a mighty mechanism of
software development—searching for software is far easier and
less time-consuming than implementing it.

Harnessing the diversity of the Internet-fed software ecology
would be fruitless were it not for the co-development of
open standards that are freely accessible and unencumbered
by proprietary or patent claims. The fundamental protocolsof
the modern Internet, such as IP/TCP, DNS, and HTTP, are
superb examples of open standards. These standards hide im-
plementations behind protocols, and integrating systems based
on protocols may be less difficult than integrating systems
implemented as libraries. Protocols have many advantages,

3Google is built entirely on inexpensive commodity hardware running open
source operating systems and utilities. Individual Google clusters contain
thousands of hosts and when the hardware fails it is more cost-effective for
Google to consign it to the trashbin than to repair it.

as they tend to be simple, transparent, and programming-
language agnostic. Protocols standardize interfaces, andin
a world of hyperexponential change, the interfaces—not the
implementations—constitute the real value.

As an architectural endeavor, raging incrementalism rests
upon two recent innovations, peer-to-peer constructions and
REST. Systems are not amenable to rapid incremental change
unless their constituent elements are decoupled. By this I
mean that the system architecture must endure (nay, encour-
age) ongoing change. Without adequate decoupling, rapid
incremental change is impossible, as insertion, modification,
or deletion of components may destabilize the system to
the point of failure or collapse. Peering architectures are
resilent to commmon sources of system instability, such as
the movement of resources, changes in membership, and
variations in connectivity or provisioning. REST allows system
designers to regard their system as a large finite state ma-
chine in which state transitions are transparent to cooperating
peers. This transparency elevates, to a system level, many of
the accepted techniques of industrial-strength object-oriented
programming—including, but not limited to, delegation, mix-
ins, filters, triggers, contracts, and behaviors. REST permits
system assembly from large-scale piece parts (golden screws
and golden bits) on an unprecendented scale. The modern
world-wide web is a working example of the robustness and
resilence of RESTful design and implementation.

IV. L IFE CYCLE COSTS

For many large-scale systems, such as space ground sys-
tems, the total system life cycle cost is dominated entirely
by the operations and maintenance costs. In other words,
irrrespective of what the system cost to procure, its lifetime
operations and maintenance expenditures will swamp that.
Raging incrementalism directly attacks life cycle costs on
multiple fronts:

• Purchasing commodity hardware on demand minimizes
the total hardware investment andeliminatesdepot costs,
since replacement components may be ordered only as
needed and delivered within hours to days

• Eschewing speciality hardware in favor of commodity
hardware and software reduces time to delivery and
forestalls obsolescence

• Relying on open-source software drastically reduces or
eliminates licensing costs

• Hosting on interchangeable commodity platforms reduces
training costs, since all platforms are largely interchange-
able and repair costs evaporate because it is often more
economical to replace the commodity platform outright
than to repair it

• Locking customers into a vendor is impossible when
both hardware and software are fungible—sole-source
procurements become a quaint anachronism

• Sustaining systems is incremental and upgrades can al-
ways take advantage of the most cost-effective commod-
ity hardware and open source software

4

Raging incrementalism attacks costs at all points in the system
life cycle from concept to disposal.4

Deployment comes early and often in the life cycle of
a “raging incremental” program—in fact deployment is just
another (small) repeated incremental milestone in the pro-
gram’s history. From that point forward raging incremental-
ism guarantees that the system can be replaced, augmented,
expanded, contracted, or encapsulated element-wise. Since no
one element of the system is expensive (recall that open-source
software is free and commodity hardware is essentially free)
the sustainment costs are modest and—in a world sustained
by raging incrementalism—the system may be replaced (at a
cost/performance ratio that is improving hyperexponentially)
however the customer wants whenever the customer chooses
at whatever pace the customer desires.

V. SUMMARY

In a world of hyperexponential change systems that fail
to acknowledge and exploit change are obsolete long before
they are deployed. Raging incrementalism embraces change
as a fundamental driver of system design, construction, de-
ployment, and sustainment. To demonstrate the utility and
efficacy of raging incrementalism we are developing two
demonstration systems for launch range operations. The first is
a distributed countdown clock service designed to replace the
obsolete timing and countdown infrastructure of the ranges
with a peering system constructed entirely from commodity
hardware and open-source software. The second is a network-
centric range video system to replace an aging video plant
supporting hundreds of cameras with one capable of managing
thousands of cameras with greater flexibility and dramatically
lower costs.5 We hypothesize that the “raging incremental”
systems outlined above will prove to be more cost-effective
and sustainable, in all respects, than the systems that they
replace.

REFERENCES

[1] Ray Kurzweil, The Law of Accelerating Returns, March 7, 2001,
www.kurzweilai.net/articles/art0134.html?printable= 1.

[2] Roy Fielding, Architectural Styles and the Design of
Network-based Software Architectures, Doctoral dis-
sertation, University of California, Irvine, 2000. See
www.ics.uci.edu/ f̃ielding/pubs/dissertation/fielding dissertation.pdf

4Recycle the commodity hardware by donating it to a local grade school
or the nearest third world country.

5For example, the raging incremental video system replaces an obsolete
and expensive (> $1,000,000) video archive storing less than 13 camera-
hours of video with commodity hardware (< $15,000) storing more than
4,000 camera-hours of video. The price/performance of the legacy archive
system is approximately $77,000/camera-hour while the raging incremental
replacement is less than $4/camera-hour.

