
Overview of ACE2
Presentations

Thomas A. Alspaugh
Institute for Software Research
University of California, Irvine
31 March 2004

Lt Col Laura Pope
(Air Force Space and Missile Systems Center)

Better architecture up front => better system
System architecture, not software architecture
Architecture should be the model for evaluation

Consider operations, maintenance
Address issues up front
Neither requirements nor code are right level

Requirements are never adequate
Addition: scenarios of use that express tests

Dr Joel Sercel
(MILSATCOM Joint Program Office)

Understanding is important, not architecture
Good understanding precedes good architecture

Architecture = set of constraints on designs
Choose constraints that are effective

in achieving the qualities you need
example: invariants aid change management

Necessary for managing change

Dr Linda Northrop
(SEI)

SA is structure(s) comprised of
software elements
their external behaviors
the relationships among them

Architecture is the center of many activities
Scenarios are more expressive than attributes
SEI has a number of SA techniques and methods
All the ACE2 objectives are quality attributes

Dr Peter Hantos
(Aerospace)

The system is what is important
Architecture is just a way to achieve system goals

An architecture is a dynamic entity that evolves
Architecture-centric development process covers
long list of aspects
Use cases bind all the core workflows together
Don’t use MIL-STD-1521B

Overall
(1st session)

What is architecture?
set of constraints
components, behaviors, relationships
...

System architecture or software architecture?
What can architecture do for you? Everything?
When / how are scenarios useful?
Good architecture precedes good system

What is a good architecture?
What precedes a good architecture?

Capt Bryan Berg
(Air Force Space and Missile Systems Center)

Architecture: a “string” to perform a contact
~5 components, their functions, and their
interconnections (in terms of SEI defn)

COTS components + in-house “glueware”
“glueware” isolated COTS component changes

Upgrades difficult (except one case)
No control over COTS component evolution

Plan to use industry standards to ease upgrades

Peter Shames
(JPL)

UML-based reference architecture for space data systems
Several views of system

each with its own kinds of components and connections

Its use: describe (model) the system, then reason using
the description
Primarily addresses understandability

maintainability, extensibility, executability indirectly

Jim Boegman
(Raytheon)

Architecture is higher-level view than design
architecture above design above implementation

Requirements at all these levels
They find architecture (in this definition) is
insufficient to assess maintainability, etc.

More detail is needed, such as a prototype

Dr Allen Nikora.
Myron Hecht, Douglas Buettner

Reliability-centric process
Reliability estimated from testing results

Or from pre-testing characteristics such as “churn”

Can’t assess reliability from architecture
Unreliability indicates inadequate architecture

Overall

Specific architectures have specific advantages
and disadvantages (Berg, Boegman presentations)

High-level view insufficient for evaluation

Reference architecture based on UML
A number of views of a system

Would Pope, Sercel, Northrop, Hantos view any
of these things as architectures?
Reliability the most basic ility?

ACE2’s four issues for software
architecture (SA)

SA as basis for understandability
Architecture provides common terminology and concepts,
basis for relating stakeholder viewpoints

SA as link between req’s and detailed implementation
Evaluate impact of requirements change -- maintainability
Provide basis for considering extensibility
Assess executability of requirements

Architecture is “right level” for considering requirements

