
A Philosophy of Software Architecture

Preliminary Thoughts From the Perspective of
Transformational Communications MILSATCOM (TCM)

Presented at:
Architecture-Centric Evolution and

Evaluation (ACE2)

Sercel, Gat, and Hutchison
TCM Program

Topics

• Modern aerospace software
• Proposed definition of Architecture
• Some possible benefits of this definition
• Application to change management
• Operationalizing this view

Modern Aerospace Software
• Heterogeneous
• Multiplatform
• Distributed
• Large Scale
• Multi-contractor
• Evolutionary
• Backwards Compatible
• Standards Based (or not)

Architecture?

To (structural, naval, and other)
architects…

is a set of features shared by a
set of designs.

Why Bother?

• Proposed Equivalent Definition:
– An architecture is a set of constraints on design

• Why This Definition?
– Good constraints can guide designers towards

good designs
• Or at least away from bad ones.

Architecture May Aid Software
Development and Engineering

• Interoperation
• Legibility
• Extensibility
• Change Management*
• Synchronization
• ….

* More on this.

TCM Software and Change
Management

• TCM is a long-term program.
– Changing requirements and technologies

are inevitable.
• Without constraints, any change may

require a complete redesign.
• Hence, these thoughts regarding

architecture.

Two Classes of Constraints

• Compositional constraints
– Decomposed into

subsystems/components. (Often all that is
meant by “architecture”.)

• Meta-Compositional constraints
– Constraints on how components work,

work together, or are designed
– See examples/discussion

Two Types of Constraints That Aid
Change Management

• Invariants
– Guaranteed not to change

• Conditional invariants
– Don’t change unless specific condition met.
– Example: Design decisions placed under

CM.

Examples of Such Constraint
• All interface data protocols must be (SDSI)

– SD (Self-Delimiting)
• Information on where data fields begin and end

– SI (Self-Identifying)
• The identity of fields is contained within the data stream

itself

• Examples:
– XML,
– S-expressions

XML Could Be SDSI for
Spacecraft Control

As opposed to:

CMD type (16 bits) MODE (16 bits)

<command>
<cmd_type>set_mode</cmd_type>
<mode_id>standby</mode_id>

</command>

00001001001100100000000000011011

plus a document that says:

SDSI Protocols (cont’d)
• Easier to change than fixed-field protocols

– No fixed-length fields
• No code rewrite to accommodate larger data sizes

– No ordering dependencies
• No order-dependent bugs

– Automatically backward-compatible
• Unknown field types can simply be ignored

• But no free lunch
– SDSI protocols are harder to parse, less efficient
– Moore’s law and shared code bases make this a

good trade

Other Possible/Example System
Constraints

• The system shall be evolutionary
– Elements designed and configured to accommodate rapid and

orderly modification.
– May encompass response to existing or new requirements and

technologies.
• The system shall support automated verification

– Verify intended functionality of all changes to
• operational software,
• database, and
• procedures
in the intended operations environment.

Architectural Constraints Support:
Software Maintainability & Extensibility

• Can be defined to ease the assembly and
interactions among components of an
architecture.
– May be recursively decomposed into primitive system

elements
• Embracing standards

– Reduce engineering load on the program
– Maximize shared code and/or COTS

• Facilitates software maintenance/evolution
– Faster and cheaper upgrades and changes

Operationalizing These
Thoughts

• Establish program level software IPT
– All major software developers within program

contribute
– Tasks broader than S/W architecture

• Key Tasks/Products
– Collaborative definition of program software

architecture(s)
• Two example views from this discussion include

syntactic and design
– Balance contractor/specific processes and

constraints against program level view

Summary

• Effective constraints define effective
architecture

• Necessary for managing change
– Architecture (the concept, if not the term)

• Should be defined early in the product
development life cycle and maintained as
collaborative product of software IPT

