
GSAW Breakout Session

Process Mismatch with COTS-Based 
Systems: Problems and Solutions

Developing and Negotiating
Requirements 

Donald Sanders,

John Brown

Integral Systems, Inc.

April 2, 2004



Integral System Background
• Integral Systems, Inc. (ISI), provides satellite ground systems 

– Founded in 1982, 350 employees
– Headquartered in MD; Offices in CO, OH, & Toulouse
– Three subsidiaries; RT Logic, Sat Corporation, Newpoint Technologies

• We produce COTS software packages, and offer COS software suites
• First to market with commercial software for command and control
• Largest installed base of command and control systems in the world
• Over 120 command and control systems delivered successfully on five 

continents
• 50% world market share for commercial satellites

• We act as system integrators for turnkey systems
– We provide a suite of COTS solutions
– We enhance our products through bundling with 3rd party hardware and 

software 
• Prime Contractor for CCS-C

– Command and Control System – Consolidated
• Monitors and Controls MILSATCOM Satellites



Requirements Development 
(Commercial vs. Government Contracts)
• Initial requirement definition should be limited to high level only

– Don’t force a design, or accommodate “COTS looking for a solution”
– Less is better

Commercial Contracts
• Typically requirements are defined within several pages of a “Statement of Work” 

type document
• Any “low level” requirements included are the exceptions to the rule and are 

usually only specified when something is not obvious
– For instance, there is no need to specify that a design for new car has a 

steering wheel instead of a yoke unless you expect to use the car in an 
unconventional way

Government Contracts
• Requirements are specified more formally

– Allows more a more equal playing field among competitors
– Required to meet various FAR (Federal Acquisition Regulation) clauses

• Many times “low level” requirements are specified simply to meet a heritage “Ops 
Con”



Requirements Development 
(Commercial vs. Government Contracts)
• Subsequent mapping of requirements into either COTS vs. custom 

code allows quick ID of product applicability
• Requirements tracking, mapping, and reporting maintains clear 

relationships and uncovers holes

Commercial Contracts
• Generally only high level mapping is done, very little documentation is produced to 

formally show the mapping
• Testing of delivered product can be informal, many times a comprehensive 

“demonstration” can be done to sign off on a system

Government Contracts
• Formal traceability is documented in various Product Specification and 

Requirements documents
• Government contracts tend to be “longer” with more builds

– More sophisticated tracking is needed so that only the appropriate 
requirements are tested at each phase



Requirements Development 
(Commercial vs. Government Contracts)
• COTS allows quick prototyping

– May lead to new requirements, altered requirements, changed mapping
– Can provide initial verification of architecture

Commercial Contracts
• Prototypes are crucial to helping our customers develop an Ops Con

– Many times requirements are written AFTER a prototype has been 
demonstrated

• Changes to requirements are usually minimal due to the fact that requirements 
are at a high level

– When things “change” it usually simply means that a refinement to an 
interpretation of a requirement has been made

Government Contracts
• Prototypes can be beneficial to demonstrate capabilities
• Lots of early customer interaction is encouraged but can impact the overall 

progress of the program
– Contract Negotiations and Systems/Software Development follow two 

separate path that must meet
– Good Systems Engineering must be in place to ensure that developers do 

not act solely on “comments” and that legitimate changes can progress 
swiftly through the contracting approval process



Requirements Development for 
COTS-Based Systems

• COTS requirements should stop at functionality, not go into detailed 
design (simplifies testing too)

– If a requirement specifies some type of design, then it may be impossible to 
meet the requirement with a COTS product even though the COTS product 
can meet the intent of the requirement

– Writing a test procedure to verify a requirement is easier to do if the 
requirement is at a functional level

• At the test procedure approval phase, if additional detail needs to be added to a 
procedure to verify something very specific, it can easily be accommodated

• This allows the test to be focused on what is important
– It may be difficult to modify a COTS product to include new requirements

• Even though a company may have access to COTS source code, the product is 
generally maintained by a separate group whose staffing, funding, and schedule 
are driven by factors outside any single program



Augmented Process

COTS 
Unique

Traditional

System Requirements Definition

Architecture Definition

Requirements-to-COTS Mapping

Design Definition

Interface Code and Custom Code Definition

Design Trades

Design Implementation

Prototyping and Demo



CCS-C Example
• For CCS-C the requirements, and therefore architecture, cleanly 

mapped to COTS components
– In Phase 1 design competition, requirements were defined, as well as a 

logical architecture, which included large COTS components
• Requirements that were first overly restrictive were re-examined and improved

– In Phase 2 award phase, architecture was refined to include over 30 
different COTS components

– Our COTS-based architecture facilitated a clearer understanding of the 
system, and how it would be built-out

– Very few trades were necessary with customer requirements
• Systems Engineering played a key role

– The DOORS DB tool was used for tracking/mapping requirements to COTS 
components, and custom elements and components

• CCS-C is an excellent example of a good contractor/customer working 
relationship

– Partnership rather than antagonistic



Requirements Development Conclusions
• Keep the requirements high level

– Allows for easier functional mapping into COTS and custom code
• Allow for iterative process of definition, mapping and refinement
• Keep COTS requirements at black box functional level
• A shoulder-to-shoulder approach between customer and contractor is 

necessary
– This approach provided flexibility, and accommodated demands of “process 

tracking” without being overtaken by process
– Allows for more detailed requirements to be added under already existing 

requirements for clarification
• A strong systems engineering effort is necessary

– Keeps everyone aware of requirements and how they are going to be 
interpreted and implemented

– Provides a single focus point (lower level IPTs defined the details and 
presented them to the community through the SE IPT)

– Maintained a traceability of requirement changes



GSAW Breakout Session

Process Mismatch with COTS-Based 
Systems: Problems and Solutions

Creating and Validating Architectures

Donald Sanders,

John Brown

Integral Systems, Inc.

April 2, 2004



Which came first, the Architecture or the 
COTS?

• From the beginning…
– Traditional approaches to requirements and architecture development was 

linear and most if not all systems were custom
– Functional decomposition lead to subsystem definitions
– COTS products were eventually developed that could meet specific

subsystem or component needs, fill “niches”
• Recent History

– COTS products were touted as low cost “plug ins” to any architecture
– “COTS glued together” even though the rage, was not effective or cost 

efficient
• Contemporary Answer – ISI’s answer

– More robust COTS products, used appropriately and combined 
with good systems engineering practices, are highly cost effective 
and can be integrated into a flexible, extendable, maintainable architecture.

– Requirements development can still be process driven, but the process 
can’t be rigid

– Systems engineering plays a key role

GOOD COTS

BAD COTS



Validating COTS-based Architectures

• COTS allows rapid prototyping
– Demonstration of capability early on of a small scale similar 

architecture is very effective
– Factory developed performance tests of similar component 

quantities and loading is effective
• COTS allows fairly easy reconfiguring – “what if” configurations

– Findings of performance tests can lead to validation, or drive 
selection of alternate architectures

• Future validation – formal subsystem and system test – is 
simplified
– Its not necessary to test COTS components at code or unit level



Creating and Validating COTS-Based 
Architectures

• CCS-C Architecture Example

F

B

D

A

E

C

I

I

H
G H

G

COTS
Key

New
Reuse/NDI

J

K

Note:  Color coding assignments ref lect the majority of  the code per component.  An orange color code does not necessarily imply no new  code w ill be developed.

T&C Processing

FEP

Procedure  Auto. Client

Procedure  Auto. Server

Schedule Exec. View er

T&C Database

T&C Client Utilities

T&C Server Utilities

SV Sim ulator

SIM

Sim ulation Executive

GS Sim ulator

Instructor User Interface

Database Utility

OAA GUI/Core

Trending

Archive

OAA

AT

T&C

OAA Utilities

OAA External Interfaces

OAA Batch/Core

M PS

M PS Database

DB Initialization Util.

Sat. Support Plan Gen.

Resource Config. M gm t

Schedule  Generation

T&C Interface

OAA Interface

AFSCN Interface

Schedule  Exec. Server

Procedure  Builder

Crew  Support

OPS M on & Control

NATO MUS

M US
DSCS M US

Ex. Data Conversion
DB Ingest Script

WGS M US

Ex. Data Convers ion

WGS T&C MUS

AEHF M US
Ex. Data Conversion

UEM  Generator
MIM

DB Ingest Script

M ils tar M US
Ex. Data Conversion

UEM  Generator
MIM

DB Ingest Script

DB Ingest

M ils tar Cm d Builder



Typical ISI Architecture

• EPOCH Architecture
– One of more servers and one or more user client workstations 

interconnected via LAN/WAN
– Each server can control one or more satellites
– Each client can connect to any/all servers
– Spacecraft defined via database

• Open interfaces using industry standards allows integration with
other COTS products

Laser printer

EPOCH Server EPOCH Server

EPOCH Client EPOCH ClientEPOCH Client



CCS-C Example

• CSC-C used a multi-tired approach to testing
– Initial performance

• Initial performance data was available during contract demo phase
• Performance data was available at CDR

– Informal Subsystem and system testing
• Components with custom code required more rigorous testing
• Component level test done at contractor factory

– Formal
• Subsystem, inter-subsystem interface, and some system level testing 

done at factory
• Preliminary end-to-end ops and performance testing conducted at 

factory, and that shaped the formal test on site
• Subsystem install and regression testing done on site
• System and external interface testing done on site


