Weather forecasting and fade mitigation

GSAW 2005

Robert J Watson & Duncan D Hodges

r.j.watson@bath.ac.uk & d.d.hodges@bath.ac.uk
Telecommunications, Space and Radio Group
University of Bath

Introduction

- Why bother to forecast propagation conditions ...
 - ▶ Better performance than "closed-loop" FMT systems?
 - > what can a priori knowledge of fades do for us?
 - > Proactive rather than reactive fade countermeasures
 - What if the time-of-flight becomes too long?
- Our approach: use meteorological information to determine propagation conditions – can be done in real-time

Background to our work

- ► Fade mitigation technique simulation ...
 - Design of FMT systems e.g. power-control, variable rate coding
 - Requirement for synthetic attenuation time-series
- ➤ Our approach ...
 - >recreate the meteorology ...
 - ...rather than to attempt to model the statistical and dynamic behaviour of attenuation ...
 - > ...and then estimate the resulting propagation conditions

Generation of historical time-series

- Estimate attenuation from combination of
 - >archived numerical weather prediction model data (UK Met Office's so-called Unified Model)
 - UK Met Office's weather radar network (15 C-band radars)
- ► Have the complete "picture" fade estimates for entire networks that have ...
 - >correct spatial and temporal statistics (e.g. cdf)
 - >correct dynamic characteristics (e.g. fade slope)
 - >correct spectral characteristics (e.g. psd)

University of Bath model

Example time-coincident time series for multiple sites

- Data from 22/6/2003
- Fade Level experienced from 50 GHz Downlink
- Geo satellite at 2W

ITU-R verification – Bath, UK 50 GHz

Fade slope

➤ The thin line represents the VDK theoretical model, the thick line represents the analysis from the output time series.

Example model output

- Data from UM (5 minute intervals)
- ► 1st April 1998
- Fade Level (dB) experienced from 50 GHz Downlink
- Geo satellite at 2W

Forecasting for resource management

- ▶ If run in real-time the model can provide forecasts of network availability – can be used for network control
- ► The components that model stochastic small scale structures are disabled you can't predict the actual scintillation

Advantages of employing forecasting techniques

- Can take time to get accurate signal quality measurements (BER, PER etc), or the coding used may be so strong that the PER dynamic range is insufficient
- ► Allows "proactive" resource management systems such as time diversity techniques to create service availabilities that exceed link availabilities
- Can be used when time-of-flight is longer than the channel can be considered stationary

Errors – what if it goes wrong?

- ➤ Suppose the forecast is wrong what effect does that have on the network performance?
 - >can we make things worse?
- ► How can the forecast go wrong?
 - ➤ Temporal errors e.g. a fade is correctly predicted but occurs earlier/later than forecast
 - Spatial errors e.g. rain cells occur that the forecast does not predict

Temporal error results

- ▶ If we sum all the terminal error performances, we can get a measure of the overall network performance.
- From a network point of view we get an improvement over the temporal error ranges:
 - > Terminal set 1:
 - -10.17 to 10.24 mins,
 - > Terminal set 2:
 - -9.92 to 10.04 mins.

20.7 GHz GBS (23W) Beacon Chilbolton & Sparsholt

- Currently the only live Ku / Ka / V band beacon measurements in the UK
- ▶ US military satellite ephemeris is not precisely known
- ➤ We have taken an example week 13-20th October 2004 of beacon measurements, filtered to remove most of the scintillation component
- ► The model outputs were taken for a 3x3 0.11 degree grid around the relevant receiver

20.7 GHz GBS (23W) Beacon

Chilbolton & Sparsholt

20.7 GHz GBS (23W) Beacon Chilbolton & Sparsholt

- Simulating operational 'tactical' deployment
- Measure the ability to predict an attenuation threshold being exceeded
 - > Fade warning or suggested data rate change etc
- Measure forecasting skill as a Extreme Dependency Score (EDS)
- ► Initial investigations showed that the greatest skill was demonstrated with an umbrella point of 1

20.7 GHz GBS (23W) Beacon

Chilbolton & Sparsholt

Example ETS measures for 24 precipitation forecasts at 10mm/hr threshold compared to NIMROD radar system:

•	HIRLAM (Finnish Met. Inst.)	(22km)	0.45
•	ALADIN (Meteo France)	(10km)	0.55
•	Lokal Modell LM (DWD, Germany)	(7km)	0.60
•	UM (UK Met Office)	(12km)	0.70

The Future

- ► NWP model development ...
 - Smaller grid lengths improves resolution and accuracy
 - ▶ Improvements in the modelling of convection
- ► UK Met Office has operational European domain model – encompasses all of Europe on a 12 km grid
- Future work ...

 - does it work for other climate zones tropical regions?

Acknowledgements

- ► This work is funded by the UK Engineering and Physical Sciences Research council and (in part) BAE SYSTEMS
- ➤ We thank the UK Met Office, the British Atmospheric Data Centre and the Rutherford Appleton Laboratory (GBS beacon data)

