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Background

- AIMS: Low-level monitoring and trending for single mnemonics using machine learning
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- Goal: High-level monitoring and trending across multiple mnemonics
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ASRC Federal Machine Learning Evolution

Cross Mission Correlation of External Events

System Logs & Configuration Monitoring
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The 4 parts of successful machine learning

Useful Data '\

Architecture

Tuning

\_} Consistency
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Useful Data
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Getting useful data

1. Accidents in real life are rare.
1. Your chance of a fatal car wreck is 0.00000125% per mile
2. Your chance of a fatal plane crash is 0.0000000007% per mile

2. Machine learning is based on meeting an objective function,

such as accuracy prediction.
1. Assume no airplane fatalities ever: 99.99999999983% accurate
2. Assume no auto fatalities ever: 99.99999875% accurate

3. Simulation lets us change those odds to 50-50, where
machines learn best:

Accident simulator par excellence — Grand Theft Auto
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GOES-R Synthetic data generation

* Designed and implemented a proof-of-concept control and simulation API
* First use case: Reaction wheel (RW) degradation and failure
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_——
Creating tagged data

* Reaction wheel speed and vehicle slew rate is generated for random efficiencies (50% - 100%)
* The simulation creates an input vector of slew rates

 The simulation creates an output vector of RW efficiency

e Data is stored for train/test

GOES, Simudaben gy
G065 TopConbmier gy

—_— —
index 155t sppend(key)

Vehicle Goal and Orientation

PiechRwhesi antraller.py
ReactionWhesiC antredlerpy

50

el simulator testbed

1ler: commanding wehicle to (76.84, 32.19, 19.34) -50
to_angle_task()s pitch-ctrl is woving to angle 25.84
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woue_to_angle_task(): roll-ctrl is soving to angle 38,29

Customer-Focused. Operationally Excellent. ASRC FEDERAL



Architecture

Tuning
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_——
Architecture and tuning

* Initial architecture guess: 1 layers of 100 neuron MLPs ¢ Final architecture : 2 layers of 230 neuron MLPs

* Initial hyperparameter guess: * |nitial hyperparameter guess:
* Optimizer Adam, with learning rate of 0.01 * Optimizer Adam, with learning rate of 0.01
* Batchsize=10 e Batchsize =13
 Epochs =40 * Epochs=70
vl = VA.EvolveAxis ("X", VA.ValueAxisType.FLOAT, min=-5, max=5, step=0.25) E"'L"E.J.Uﬂ.[j.ﬂl'l E-l.i"].lﬂ'l:tif}ﬂ
v2 = VA.EvolveAxis ("Y", VA.ValueAxisType.FLOAT, min=-5, max=5, step=0.25) |
1
vzvals = VA.EvolveAxis ("Zvalsl", VA.ValueAxisType.FLOAT, parent=vzfunc) - - E l l - - : - -
vzvals = VA.EvolveAxis ("Zvals2", VA.ValueAxisType.FLOAT, parent=vzfunc) D - E D i
B N . X0
eo = EvolutionaryOpimizer (keep percent=.5, threads=0) - - i

eo.add axis(vl)
eo.add axis (v2)

eo.create intital genomes (10)

evolve list = [] . .
num generations = 20
for 1 in range (num generations): I:-"'_-

fitness = eo.run optimizer (example evaluation function,

example save function)
evolve list.append(fitness)

mutation Crossover
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Real-time inference

AWML Reaction wheel semiglator testbed A B c D E F G H I J K L

1 o | 1]2]3]als]e]|l7]8]9]10]

1: Positive increasa 2 elapsed-time| 0.1 01 02 02 03 03 04 04 05 05 06
3 inferred_pitch_efficiency| 1.0 1.0 1.0 10 10 1.0 10 1.0 10 1.0 10

4 inferred_roll_efficiency| 0.7 0.7 07 07 07 07 07 0.7 07 07 0.7

5 inferred_yaw_efficiency| 0.0 0.0 00 00 00 00 00 00 00 0.0 0.0

6 inferred_pitch| -0.1 -0.3 -0.6 -0.8 -1.1 -1.3 -16 -1.8 -2.1 -2.3 -2.6

7 inferred_rolll 0.0 02 04 06 07 059 11 13 15 16 18

8 inferred yaw| 00 00 00 00 00 00 00 00 00 00 0.0

g pitch_goal_angle|-24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5

10 roll_goal_angle| 42.5 42.5 42,5 42.5 425 425 425 425 42.5 425 425

11 yaw_goal_angle| -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3

12 | CMD_board-monitor_to_top-controller|RUN RUN RUN RUN RUN RUN RUN RUM RUN RUN RUN
13 | RSP_top-controller_to_board-monitor| EXECI EXECI EXEC! EXECI EXECI EXECI EXEC| EXECI EXEC| EXECI EXECI

14 pitch_wheel_angle| -1.8 -6.5 -11.1 -15.7 -20.3 -25.0 -29.6 -34.2 -38.8 -43.4 -48.1

15 roll_wheel_angle| 1.3 4.5 7.7 109 141 174 20.6 23.3 27.0 30.2 33.4

16 yaw_wheel_angle| 00 00 00 00 00 00 00 00 00 00 0.0

17 pitch_wheel_efficiency| 0.9 053 05 05 09 05 05 05 035 035 09

18 roll_wheel_efficiency) 06 06 06 06 06 06 06 06 06 06 0.6

19 yaw_wheel_efficiency| 0.7 07 07 07 07 07 07 07 07 07 07

20 pitch_angle| -0.1 -0.3 -0.6 -0.8 -1.0 -1.2 -15 -1.7 -1.9 -2.2 -24

21 roll_anmgle| 01 02 04 05 07 05 1.0 12 14 15 17

22 yaw_angle 0 1] 0 o ] 1] ] 0 0 ] 0

23 nw_mass 1 1 1 1 1 1 1 1 1 1 1

24 vehicle mass| 20 20 20 20 20 20 20 20 20 20 20

25 CMD_board_monitor_to_simulator|RUN RUN RUN RUN RUN RUN RUMN RUN RUN RUN RUN
26 RSP_simulator_to_board_monitor|EXEC!I EXECI EXEC| EXECI EXECI EXECI EXECI EXEC! EXECI EXECI EXECL

I nfe rred effiCie n cy 27 pitch_voltage| -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100
28 yaw_voltage ] 1] 0 o o 0 0 ] 0] 0 ]

29 roll_voltage| 100 100 100 100 100 100 100 100 100 100 100
30 CMD_top-controller_to_pitch-ctrl|MOVIMOVI MOV MOV MOVI MOV MOVI MOV MOV MOV MOV
Act u a I effi C i e n Cy 21 RSP_pitch-ctrl_to_top-controller| EXECI EXECI EXECI EXECI EXECI EXECI EXEC! EXECI EXECI EXECI EXECH
32 CMD_top-controller_to_yaw-ctrl| MOVIMOVI MOV MOVI MOV MOV MOV MOVI MOV MOV MOV
Al{a‘hdl_ REBCI icn WhEEI S"rnulatljr tEStbed 33 RSP_yaw-ctrl_to_top-controller| DONEDONEDOME DOME DONE DONE DONE DONE DOME DOME DOMNE
34 CMD_top-controller_to_roll-ctrl| MOVIMOVI MOV MOVI MOV MOWVI MOV MOVI MOV MOV MOV
33 RSP_roll-ctrl_to_top-controller|EXECI EXECI EXECI EXECIEXECI EXECI EXECI EXECI EXECI EXECI EXECH

Simulation run Saved simulation data
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Validation against new synthetic data
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Consistency
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Consistency

1.

2.
3.
4

Neural Networks are initialized with random numbers

The same network will train differently every time

Accuracy differences for the same model can be as high as 50%
This makes it very hard to find the right hyperparameters!

Let’s use some simple data to see this clearly
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Ensembles
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The best parameters are based on an Ensemble average of multiple models
Multiple models for the same parameters are stored

In inference, the average of all model predictions is taken as the best value
Ensembles produce consistent and repeatable results

Ground Truth

All Predictions Ensemble Average

100

0754 —

0.50

0.25 -

0.00 -

=0.25 4

—0.50

=0.75 1

-1.00

T T T T T T
o 20 40 60 80 100

1.00 -
0754
0.50 4
0.25 4
0.00 -
0251
\

—0.50 -

=0.75 1

T
60

T
80

T
100

Customer-Focused. Operationally Excellent.



Evolving ensembles

1. We created Optevolver —an Ensemble hyperparameter/architecture using GAs
2. Uses a set of models to find average, standard deviation and min/max
3. Much faster, though not quite as good as grid search

1.2

i
2.25
—— exhaustive (1600 iterations)
3004 — evolved (14 iterations)
1.75 0.8
1.50
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1.00 4
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0.25 H
T T T T T T T 0‘2
0 2 4 6 8 10 12
Known Fitness landscape Exhaustive vs. genetic search 0
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—igan 5 conf 95_conf =e——|mgy —e—min

Improvement avg 47% - 64% accuracy
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Conclusions

Genetic Algorithms Ensemble prediction

* Understandable, *  Evolutionary hyper- e  Creates resilient, reliable
explainable models parameter tuning and models

* Creates balanced data sets architecture search * Ensemble models are

* Datais clean and perfectly *  Reduces time spentin repeatable and
tagged model development reproducible

*  Reduced compute cost for
model training
* Pipinstall optevolver

@ful Data
Archit@

\_/ cOhSisten@
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Questions?
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If you can read this, we’ve gone too far...
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Questions?

- Where can | get Optevolver?

— plp —install optevolver
- What does it work on?

— Just Tensorflow 2.0 right now, but PyTorch soon

« Where can | get the source?
— https://github.com/pgfeldman/optevolver

- Does it do Bayesian/particle swarm/<other cool algo>

— Not yet...
— But feel free to contribute!
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https://github.com/pgfeldman/optevolver

e A
Background

- AIMS: Low-level monitoring and trending for single mnemonics using machine learning
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- Goal: High-level monitoring and trending across multiple mnemonics
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