
Evolving Neural Network Ensembles for
Reliable Time Series Prediction

Philip Feldman, PhD
ASRC Federal

3.3.2020© 2020 by ASRC Federal. Published by The
Aerospace Corporation with permission.

Background

• AIMS: Low-level monitoring and trending for single mnemonics using machine learning

• Goal: High-level monitoring and trending across multiple mnemonics

ASRC Federal Machine Learning Evolution

Cross point correlation
& Image classification

Mission event correlation
• Scheduled events
• Observed events
• Predicted events

Event Classification
• Intentional vs anomaly

Next steps (how do we get here?)

The 4 parts of successful machine learning

1. Accidents in real life are rare.
1. Your chance of a fatal car wreck is 0.00000125% per mile
2. Your chance of a fatal plane crash is 0.0000000007% per mile

2. Machine learning is based on meeting an objective function,
such as accuracy prediction.
1. Assume no airplane fatalities ever: 99.99999999983% accurate
2. Assume no auto fatalities ever: 99.99999875% accurate

3. Simulation lets us change those odds to 50-50, where
machines learn best:

Accident simulator par excellence – Grand Theft Auto

Getting useful data

• Designed and implemented a proof-of-concept control and simulation API
• First use case: Reaction wheel (RW) degradation and failure

GOES-R Synthetic data generation

Creating tagged data

• Reaction wheel speed and vehicle slew rate is generated for random efficiencies (50% - 100%)
• The simulation creates an input vector of slew rates
• The simulation creates an output vector of RW efficiency
• Data is stored for train/test

v1 = VA.EvolveAxis("X", VA.ValueAxisType.FLOAT, min=-5, max=5, step=0.25)
v2 = VA.EvolveAxis("Y", VA.ValueAxisType.FLOAT, min=-5, max=5, step=0.25)

vzvals = VA.EvolveAxis("Zvals1", VA.ValueAxisType.FLOAT, parent=vzfunc)
vzvals = VA.EvolveAxis("Zvals2", VA.ValueAxisType.FLOAT, parent=vzfunc)

eo = EvolutionaryOpimizer(keep_percent=.5, threads=0)
eo.add_axis(v1)
eo.add_axis(v2)

eo.create_intital_genomes(10)

evolve_list = []
num_generations = 20
for i in range(num_generations):

fitness = eo.run_optimizer(example_evaluation_function,
example_save_function)

evolve_list.append(fitness)

Architecture and tuning
• Initial architecture guess: 1 layers of 100 neuron MLPs
• Initial hyperparameter guess:

• Optimizer Adam, with learning rate of 0.01
• Batch size = 10
• Epochs = 40

• Final architecture : 2 layers of 230 neuron MLPs
• Initial hyperparameter guess:

• Optimizer Adam, with learning rate of 0.01
• Batch size = 13
• Epochs = 70

Real-time inference

Inferred efficiency

Actual efficiency

Simulation run Saved simulation data

0
0.2
0.4
0.6
0.8

1
1.2

1
16

2
32

3
48

4
64

5
80

6
96

7
11

28
12

89
14

50
16

11
17

72
19

33

Pitch Efficiency

inferred_pitch_efficiency

pitch_wheel_efficiency

0
0.2
0.4
0.6
0.8

1
1.2

1
16

2
32

3
48

4
64

5
80

6
96

7
11

28
12

89
14

50
16

11
17

72
19

33

Roll Efficiency

inferred_roll_efficiency

roll_wheel_efficiency

0

0.2

0.4

0.6

0.8

1

1
16

2
32

3
48

4
64

5
80

6
96

7
11

28
12

89
14

50
16

11
17

72
19

33

Yaw Efficiency

inferred_yaw_efficiency

yaw_wheel_efficiency

-50
-40
-30
-20
-10

0
10
20
30
40
50

1 58 11
5

17
2

22
9

28
6

34
3

40
0

45
7

51
4

57
1

62
8

68
5

74
2

79
9

85
6

91
3

97
0

10
27

10
84

11
41

11
98

12
55

13
12

13
69

14
26

14
83

15
40

15
97

16
54

17
11

17
68

18
25

18
82

19
39

19
96

20
53

Actual and Inferred Angles

inferred_pitch inferred_roll inferred_yaw

pitch_angle roll_angle yaw_angle

Validation against new synthetic data

Consistency
1. Neural Networks are initialized with random numbers
2. The same network will train differently every time
3. Accuracy differences for the same model can be as high as 50%
4. This makes it very hard to find the right hyperparameters!

Let’s use some simple data to see this clearly

• The best parameters are based on an Ensemble average of multiple models
• Multiple models for the same parameters are stored
• In inference, the average of all model predictions is taken as the best value
• Ensembles produce consistent and repeatable results

Ensembles

1. We created Optevolver – an Ensemble hyperparameter/architecture using GAs
2. Uses a set of models to find average, standard deviation and min/max
3. Much faster, though not quite as good as grid search

Evolving ensembles

Known Fitness landscape Exhaustive vs. genetic search

Improvement avg 47% - 64% accuracy

Conclusions

Simulation
• Understandable,

explainable models
• Creates balanced data sets
• Data is clean and perfectly

tagged

Genetic Algorithms
• Evolutionary hyper-

parameter tuning and
architecture search

• Reduces time spent in
model development

• Reduced compute cost for
model training

• Pip install optevolver

Ensemble prediction
• Creates resilient, reliable

models
• Ensemble models are

repeatable and
reproducible

Questions?

If you can read this, we’ve gone too far…

Questions?

• Where can I get Optevolver?
– pip –install optevolver

• What does it work on?
– Just Tensorflow 2.0 right now, but PyTorch soon

• Where can I get the source?
– https://github.com/pgfeldman/optevolver

• Does it do Bayesian/particle swarm/<other cool algo>
– Not yet…
– But feel free to contribute!

https://github.com/pgfeldman/optevolver

Background

• AIMS: Low-level monitoring and trending for single mnemonics using machine learning

• Goal: High-level monitoring and trending across multiple mnemonics

Red dots = data
Blue line = ML prediction
Yellow lines = Error bands

	Evolving Neural Network Ensembles for Reliable Time Series Prediction
	Background
	ASRC Federal Machine Learning Evolution
	The 4 parts of successful machine learning
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Creating tagged data
	Slide Number 9
	Slide Number 10
	Real-time inference
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Conclusions
	Questions?
	If you can read this, we’ve gone too far…
	Questions?
	Background

