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• Data monitoring & 
anomaly management for 
NOAA/GOES-R  instrument 
data and S/C 
housekeeping data - GEO 
missions

• Predictive financial 
analytics for NOAA/NESDIS 
OCFO

Operational

• Anomaly management for 
spacecraft health and safety 
on LEO missions (NPP-
Suomi spacecraft) –Under 
consideration for NOAA 
Joint Polar Satellite Sys (4 
S/C, 2020-24)

• Enterprise situational 
awareness across missions 

Pre-Operational

• Mission event log analytics 
(unstructured text)

• ML model and algorithm 
development/training 
tools (GSAW ’20 Topic)

• Event driven actions/ 
commands

Working Prototype

ASRC Federal is the AI/ML thought leader for Aerospace
with real world experience

Advanced AI/ML research

Decades of mission specific knowledge/expertise

Applications of ML deployed for NOAA & NASA

Machine Learning capabilities fundamentally change the approach for flight mission 
implementation and operations
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New 
Missions

• Increasing data volumes/products, increasing complexity 
- CubeSats, MicroSats, Hyperspectral Imagers, Laser, Radar, Drones, Constellations, etc.

- Increasing number of sensors on missions requiring characterization, calibration and 

management (e.g. (NOAA GOES-R ABI – 7000 sensors, NASA WFIRST 18x4Kx4K 

cryo imager)

- Built-in autonomy for “safeing” instruments and spacecraft; rover operations (Mars)

• Single string vs. dual string

- Some use of non-radiation hardened flight processors (e.g. SpaceCube)

• Data Volume/complexity

- Expanding beyond a human’s cognitive ability to make assessments/ 

analyses in near real-time (without intelligent tools)

• Push to lower cost with more capability

Quality Improvements & Risk Reduction Drive

• Increased quality/availability with fewer data anomalies

• Reduce/eliminate human errors, or remove humans-in-the-loop

• Early detection of problems/anomalies – to prevent catastrophic failure

• Enterprise level visibility - Improved communication/understanding/awareness

Our View of Current / Future Aerospace Challenges
Near Term Drivers (based on our experience)
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Challenges for ML Applications in Satellite Telemetry

• A satellite is highly complex dynamical system  - many subsystems that 
interact with each other (some are dependent)

• Data Training Challenges
– More diverse data types (linear, non-linear, continuous, discontinuous)
– Highly complex data patterns (especially LEO missions)
– Relationships among datasets – simple and complex correlation

• Anomaly Detection Challenges

– Difficult to isolate anomalies in general WRT satellite health and safety telemetry 
from data pattern changes in a single dataset

• Interactions among subsystems in a satellite lead to strong correlations in telemetry 
datasets

• Correlation among multiple telemetry datasets in multiple subsystems must be taken 
into account for anomaly management

– Both event-triggered operations and anomalies can result in deviations within data 
pattern changes

• Event triggered operations refers to operations by an external command to change 
system behavior, such as an orbit maneuver

• Separating anomalies from event triggered operations is a considerable challenge        
(we have addressed this challenge for LEO spacecraft)
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• ML systems for satellite operations should have a common architecture model
– Involving data training and post training analysis processes

• A software architecture must support rapid development and an Enterprise approach
– Separate the common services and infrastructure from the mission specific components
– ML algorithms for data training and post training are integrated as plug-and-play components using 

standard API
– Provides flexibility to select algorithms for datasets with specific patterns without understanding the space 

mission operations infrastructure (ground and flight system, networks, communications, etc.)
– Scalable and extensible

• The same architecture has been deployed in the Advanced Intelligent Monitoring System (AIMS) 
for the following missions

– NOAA GOES-R ABI Instrument Calibration monitoring
– NOAA GOES-R Housekeeping data monitoring and anomaly detection
– NOAA Suomi NPP (LEO) Housekeeping data monitoring and anomaly detection

Common Machine Learning Architecture for Space Missions
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Data Training Outputs for NPP House Keeping Data
(Generated by AIMS)

Power System Quaternions

Reaction Wheel Momentum Profile Reaction Wheel Motor Current Profile
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Correlation among different datasets:
vertical lines are outliers in telemetry 

datasets, and aligned at the same time 
period, forms an event vector.

Keys to Address these Challenges

• We developed highly accurate ML 
algorithms 

– To model satellite health and safety 
telemetry data (LEO)

– Enables accurate detection of data pattern 
changes in telemetry datasets

• Developed graphical and mathematical 
representations LEO spacecraft

– Called hierarchical event vectors to 
characterize correlations among outliers in 
different telemetry datasets (from multiple 
subsystems)

– Based on data training outputs

• Developed clustering algorithms for 
event classification and anomaly 
detection

– Provides key signatures on different types 
of event  triggered operations

– Characterizes anomalies: the root-cause
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In Summary

• ASRC Federal successfully developed an approach to characterize 
the correlation of subsystem events on spaceflight systems - key 
for anomaly detection, especially for LEO missions

– Clustering of correlation patterns is critical
– Our approach for anomaly detection has been very successful on the NPP-

Suomi mission (polar orbit)

• Data volume and system complexity are expanding beyond a 
human’s cognitive ability to make assessments/analyses in near 
real-time - Intelligent tools (AI) are necessity

• A common/standard machine learning architecture for space 
missions is needed 

– To reduce implementation/integration cost (similar to the GMSEC 
approach)

– To enable data scientists/engineers to rapidly develop AI solutions without 
deep knowledge of the ground and flight system

– ASRC Federal’s ML PaaS is one approach using an API and a plug-and-play 
interface for ML models and algorithms
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