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Overview of the MSL Ground Data System

The MSL Ground Data System is complex
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« We simplified the problem and identified where data is available

Curiosity —  Orbit _, Deep Space L JPL N MSL
Rover rotter Network Data Control GDS
Data sources MAROS Telemetry GDS

Data Storage = ElasticSearch
Database
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« Data Collector gathers data from various APlIs
« Signal Processor formats the data and computes features

* Machine Learning Algorithms train on historical data
— Classify each downlink as complete or incomplete
— Detect anomalies in real-time data

Data Signal Machine Learning
Collector Processor Algorithms
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« Examples of types of data available

Predicted Data Volume of the Downlink

Actual Data Volume at each step in Downlink Process
Predicted start and end time of the Downlink
Timestamp received at each step in Downlink Process
The orbiter used to transmit the data

Elevation of the orbiter

The DSN station that received the data

Number of in-sync frames

Number of out-of-sync frames
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* Three Different Methods
— P-score
— Variance
— Random Forest

* Important Features
— Differences in Data Volume
— Difference between Actual and Predicted Start Time
— Out-of-sync frames

* Non-important Features
— Orbiter ID
— Deep Space Station ID
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« GDSA Dashboard labels passes as complete or incomplete
— No longer reliable in operations

O 34330 MRO_MSL_2019_161_04 401.112 344.419
O 34331 MRO_MSL_2019_162_01 357.719 403.643
0 34331 MRO_MSL_2019_162_01 Incomplete Wrong ERT Times 357.809 403.643
& 44330 TGO_MSL_2019_162_01 236.015 58.931
— Overall Accuracy: 91.9%
Precision | Recall f1-score | Support Dashboard
0 0.74 0.55 0.63 1141 0 1
1 0.94 0.97 0.95 7867 Actual 0 | 6251 516
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« Random Forest Classifier
— Image of one Decision Tree

&

— Overall Accuracy: 98.3%

Precision | Recall f1-score | Support Decision Tree
0 0.94 0.93 0.93 114 0 1
1 0.99 0.99 0.99 787 Aot o | 106 8
Avg / Total| 0.98 0.98 0.98 901 1 7 780
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« Deep Neural Network

— 97% training accuracy, 95.5% validation accuracy
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—— Train Dataset
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— Overall Accuracy: 95.1%

Dense

Precision | Recall f1-score | Support Decision Tree
0 0.84 0.77 0.80 176 0 1
1 0.97 0.98 0.97 1175

Avg / Total| 0.98 0.98 0.98 1351
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* Anomaly Detection

— Adversarial Autoencoder

Z
* Imposed Gaussian Distribution on - D Q 7HD

the latent space o ) "
— One-Class Support Vector Machine (SVM) (2 ] H > o
« Sigmoid Kernel yielded the best results o = | | Discriminator
Noise 128 -
k(z,y) = tanh(az’y +c)

Autoencoders and reconstruction thresholds are not well-suited for our

classification problem. Our other methods (NN, Decision Tree) produced
more accurate results.
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Results

Anomalies found in the Training Dataset

Adversarial Autoencoder
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Results

Anomalies found in the Testing Dataset

Adversarial Autoencoder
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