

Automated Data Accountability for Mars Science Lab

Overview of the MSL Ground Data System

The MSL Ground Data System is complex

Overview of the MSL Downlink Process

We simplified the problem and identified where data is available

Approach

- Data Collector gathers data from various APIs
- Signal Processor formats the data and computes features
- Machine Learning Algorithms train on historical data
 - Classify each downlink as complete or incomplete
 - Detect anomalies in real-time data

Dataset Description

- Examples of types of data available
 - Predicted Data Volume of the Downlink
 - Actual Data Volume at each step in Downlink Process
 - Predicted start and end time of the Downlink
 - Timestamp received at each step in Downlink Process
 - The orbiter used to transmit the data
 - Elevation of the orbiter
 - The DSN station that received the data
 - Number of in-sync frames
 - Number of out-of-sync frames

Automated Feature Analysis

- Three Different Methods
 - P-score
 - Variance
 - Random Forest
- Important Features
 - Differences in Data Volume
 - Difference between Actual and Predicted Start Time
 - Out-of-sync frames
- Non-important Features
 - Orbiter ID
 - Deep Space Station ID

Current Techniques

- GDSA Dashboard labels passes as complete or incomplete
 - No longer reliable in operations

Sol 2433						
0	34330	MRO_MSL_2019_161_04	Complete		401.112	344.419
0	34331	MRO_MSL_2019_162_01	Complete		357.719	403.643
0	34331	MRO_MSL_2019_162_01	Incomplete	Wrong ERT Times	357.809	403.643
0	44330	TGO_MSL_2019_162_01	Complete		236.015	58.931

Overall Accuracy: 91.9%

	Precision	Recall	f1-score	Support
0	0.74	0.55	0.63	1141
1	0.94	0.97	0.95	7867
Avg / Total	0.91	0.92	0.91	9008

		Dashboard		
		0	1	
∧ otu ol	0	625	516	
Actual	1	218	7649	

- Random Forest Classifier
 - Image of one Decision Tree

- Overall Accuracy: 98.3%

	Precision	Recall	f1-score	Support
0	0.94	0.93	0.93	114
1	0.99	0.99	0.99	787
Avg / Total	0.98	0.98	0.98	901

		Decision Tree		
		0	1	
Actual	0	106	8	
Actual	1	7	780	

Deep Neural Network

97% training accuracy, 95.5% validation accuracy

Overall Accuracy: 95.1%

	Precision	Recall	f1-score	Support
0	0.84	0.77	0.80	176
1	0.97	0.98	0.97	1175
Avg / Total	0.98	0.98	0.98	1351

		Decision Tree	
		0	1
Actual	0	135	41
Actual	1	25	1150

Anomaly Detection

- Adversarial Autoencoder
 - Imposed Gaussian Distribution on the latent space
- One-Class Support Vector Machine (SVM)
 - Sigmoid Kernel yielded the best results

$$k(x,y) = \tanh(\alpha x^T y + c)$$

 Autoencoders and reconstruction thresholds are not well-suited for our classification problem. Our other methods (NN, Decision Tree) produced more accurate results.

Anomalies found in the Training Dataset

Anomalies found in the Testing Dataset

