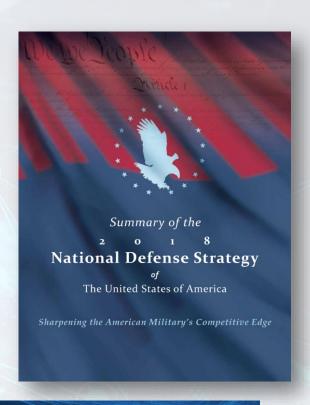
SPACE DEVELOPMENT AGENCY

SDA OVERVIEW


Col Ryan Colburn
Chief, Support Cell
OUSD (R&E)

Motivation

- Our adversaries are accomplished spacefaring nations
- Ample opportunity to study the American way of war
- Rightly concluded that our space assets offer a tremendous warfighting advantage for us and our allied partners
- Working diligently to negate these exquisite capabilities
- Two-pronged approach:
 - Systems that deny, disrupt, or degrade our access to space-based capabilities
 - Systems that operate within the gaps of our space-based capabilities
- Moreover, their ability to develop, demonstrate, and field such systems is much faster and more affordable than our ability to deploy space systems in response

Space is vital to winning long-term strategic competition – bold moves by adversaries present a call to action

National Defense Goals

- Establish readiness for the current and future fight
- Modernize offensive and defensive forces against future threats
 - Re-establish and maintain our technical advantage
 - Quickly translate technology into fielded capability
 - Strike the right balance between developing new technology and fielding current technology

The differentiator is not in the **technology** or **innovation**, it is in **speed of delivery** to the warfighter.

SDA: Aligned to the National Defense Strategy

National Defense Strategy

Resumption of Great Power Competition, Modernization of Priorities

Lethality, Partnerships, Reform

USD (R&E) Mission

Military Technological Superiority, Modernization

Creating the Technologies of the Future Fight

Space Development Agency Mission

Orchestrate the development and fielding of the future National Defense Space Architecture

Focus: Proliferated Layered Systems providing eight capabilities in "DoD Space Vision"

Non-negotiables for Modernization

WORK WITH THE WARFIGHTER

- Determine and satisfy current needs quickly
- Work with the Services to identify and mitigate gaps

ESTABLISH A COLLABORATIVE CULTURE

- Lean on industry and academia
- Adapt commercial advances to military needs
- Court nontraditional companies

EMBRACE RISK

- Use prototyping and testing
- Field capabilities quickly
- Push an atmosphere of innovation

THINK BIG, THINK FUTURE

- Develop innovative capabilities AND innovative processes
- Make bold, risktolerant investments in high impact technologies

Space Development Agency Overview

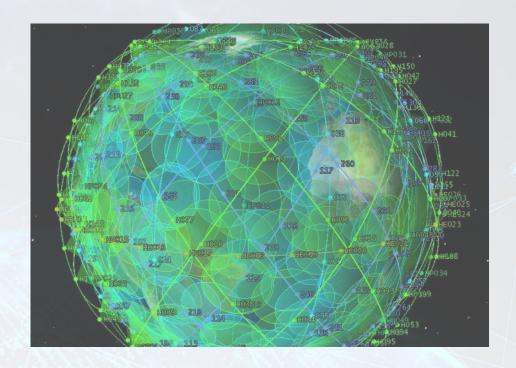
Defining and monitoring the Department's future, threat-driven space architecture and accelerating the development and fielding of next-generation space capabilities

Resilient military sensing and low-latency data transport by means of a proliferated low-earth space architecture

THREAT-DRIVEN TO DELIVER CAPABILITIES TO WARFIGHTER AT THE SPEED OF RELEVANCE

IMPROVED RESILIENCY AND RESPONSIVENESS
THROUGH PROLIFERATION

AGILE DEVELOPMENT AND FIELDING - CAPABILITIES IN TWO-YEAR TRANCHES



LEVERAGE PARTNERSHIPS WITHIN DOD AND COMMERCIAL TO ACHIEVE SUCCESS

Guiding Principles

- ➤ Threat-driven with input from the SDA Warfighter Council
- Rapid and agile development model
- Responsiveness and resiliency through proliferation
- Leverage partnerships to achieve success

Keys to responding, and even preempting, our potential adversaries

SDA Focus

- The US military/industrial complex has finely tuned its ability to develop highly capable space systems
- SDA along with current space acquisition organizations represent a balanced risk approach across the Department
- SDA charged with providing eight capabilities
 called out in Sec 1601(c) Report to
 Congress aka "DoD Space Vision" Aug 2018

A small but necessary pivot for the military space community from risk aversion toward innovation

Layered Architecture Approach

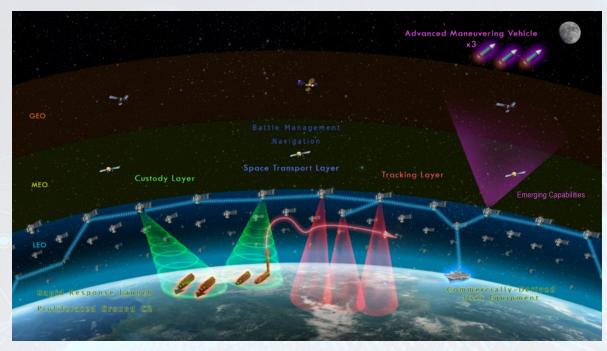
A global, persistent, low-latency data and communications transport layer

Low-latency battle management to enable time-sensitive kill chain closure

Indications, warning, tracking, and targeting of advanced missile threats

Emerging capabilities such as space situational awareness and rapid access in cislunar volume

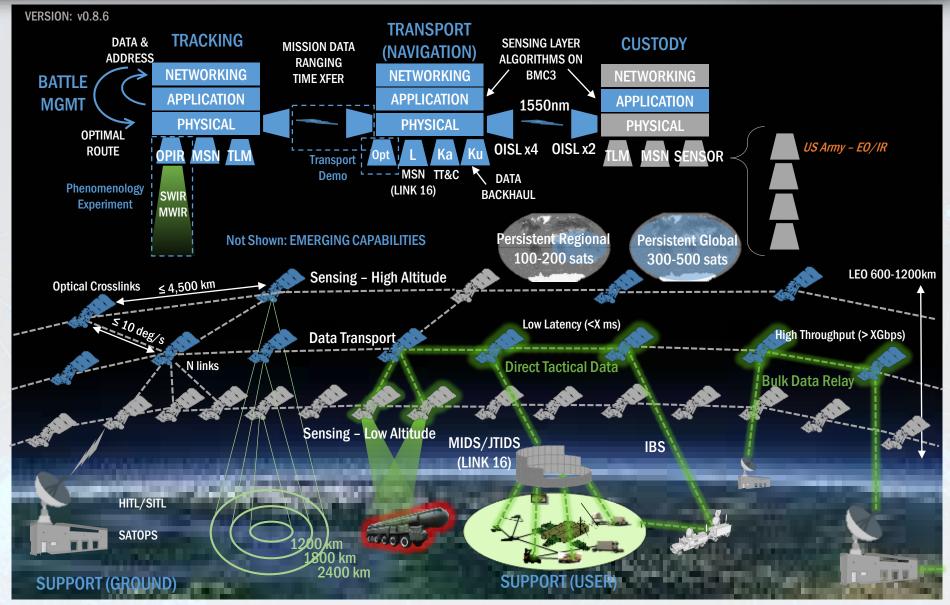
24x7, all-weather constant custody of time-sensitive targets



Alternate position, navigation, and timing for GPS-denied environments

Delivering space-based capabilities at the speed of relevance for our evolving threat environment

Notional Architecture


- Integrated architecture
- Multiple constellations or architecture "layers"
- Each layer addresses a critical, unmet gap in the national security space enterprise
- Predicated on a global, persistent, low-latency data and communications "mesh network"
- Leverages industry best practices and commercial development models
- Considering the use of transport layer spacecraft as substrates for other layers
- Proliferated, distributed approach enables resiliency (to direct threats) and responsiveness (to emerging terrestrial threats)

SDA will orchestrate the <u>development</u> and <u>fielding</u> of the future National Defense Space Architecture

ARCHITECTURE OVERVIEW

CAPABILITY BASELINE

NDSA Layer	Risk Reduction Demo (FY20-21)	Tranche 0 Capability (FY22)	Tranche 1 Capability (FY24)
Transport	Demonstrate very low latency data transport, to include optical satellite crosslink and direct downlink	Periodic regional access low-latency data connectivity	Persistent regional access low-latency data connectivity
Battle Management	Begin development of HITL/SITLFlight HW/SW for mesh networking	 C2 messages to BMDS <u>C2BMC</u> BLOS targeting support over <u>TDL</u> 	Provide data over legacy TDL for 90% of fielded weapon systems
Tracking	Flight experiment to collect WFOV data in wavebands of interest at LEO	Periodic regional access for detection of HGVs	Persistent regional access for detection of HGVs
Custody	Demonstrate multi-phenomenology, on-orbit sensor fusion	Periodic regional access with multiple sensing types through mission partner contribution	Persistent regional access with multiple sensing types through mission partner contribution
Navigation	Demonstrate dissemination of PNT information over TDL	Periodic regional access of alternate PNT	Persistent regional access of alternate PNT
Emerging Capabilities	Demonstrate relevant sensitivities and processing	Periodic access of cislunar volume for object detection	Periodic access of cislunar volume for object detection
Support	Launch and operate demo and experiment satellites	 Launch initial tranche of satellites Demonstrate scalable satellite operations 	Launch, operate, and transition capabilities

CURRENT OPPORTUNITIES

Open Date	Close Date	Action	Title	URL
02/11/2020	03/04/2020	RFI (SDA-SN-20-0004)	SDA Transport Layer Optical Crosslink Risk Reduction Demonstration RFI	https://go.usa.gov/xdNj8
01/21/2020	01/20/2021	BAA (HQ085020S0001)	National Defense Space Architecture (NDSA), Systems, Technologies, and Emerging Capabilities (STEC)	https://go.usa.gov/xdYu5
01/27/2020	02/17/2020	RFI (SDA-SN-20-0002)	SDA Space Mesh Networking Capabilities and Interoperability RFI	https://go.usa.gov/xd2fQ

SDA will host a Transport Layer Tranche O Industry Day on April 2, 2020 in Colorado Springs.

More information and registration here: https://go.usa.gov/xd9yN

Find additional info about these and future activities:

https://www.SDA.mil

SPACE DEVELOPMENT AGENCY

