Acquisition of a COTS-based Command and Control System for Legacy and New Satellites

Maj Joe Romero and Lt Col Steve Hargis MILSATCOM Joint Program Office

> Mr. Sidney Hollander The Aerospace Corporation

> > Maj Ed Bohn HQ AFSPC/DRNC

> > > 4 March 2003

Command & Control System-Consolidated (CCS-C)

Capabilities

- Launch and S-band on-orbit command and control of MILSATCOM satellites
- Integrated satellite operations center
 - DSCS III, Milstar, WGS, AEHF
- Training systems same as operational systems
- Non-collocated backup

Program Schedule

Acquisition Strategy Development

First things first

- Limited lifetime of legacy ground system
- Schedule for Wideband Gapfiller on-orbit support capability
- Advanced EHF (AEHF) launch support capability
- Development cost and schedule control

Market Survey – Early Industry Involvement

- Extensive research
 - Discussions with industry
 - Independent product surveys
 - Ground system marketplace analyses
- Determined the availability and capability of:
 - Current satellite ground system products
 - Typical commercial practices for:
 - Contract type/terms and conditions
 - Testing/Maintenance/Warranties
- Impacts
 - Identified a robust commercial market for Satellite Command and Control Systems

Multi-Phase Strategy

Initial Competition

- Multiple offerors
- Analysis of system objectives and requirements
- System design descriptions
- Technical approach to mitigating governmentidentified technical, cost, and schedule risks.
- Cost proposals:
 - Demonstration Phase
 - Four-year Development Phase
 - FFP for COTS hardware/software/installation
 - CPAF for development
 - Five years of sustainment

Multi-Phase Strategy (cont'd)

- Demonstration Phase
 - Two contractors
 - Draft System/Subsystem Specifications, engineering studies, & system design documents
 - Prototype of initial CCS-C capabilities
 - Demonstration conducted at CERES, Schriever AFB, approximately 7 months after contract award (Oct 01)
- Downselect
 - CFI/downselect NOT full/open competition
 - Call For Improvement (CFI) to Demo Phase contractors
 Release Nov 01
 - Downselect to one contractor
 - Development/Sustainment Options award Mar 02

"Fly Before You Buy"

What really happened in the Demonstration Phase

- Downselect between two contractors to award development/sustainment options
- Reduce development risk and uncertainty
 - Overcome history of COTS integration development overruns
 - Assess impact of program-unique requirements on COTSbased system architectures
 - Validate contractors' system and proposal claims
 - Demonstrated ability to interface with MILSATCOM-unique vehicles
- Hands-on operator feedback in a "real world" environment
 - "Fly Before You Buy" Software Engineering Institute (SEI) and Industry Best Practice
 - Forum for interaction and technical interchange among operators and contractors

Programmatic Challenges

Personnel constraints

- Shortages and Transitions
- Involving other program stakeholders
- Fiscal Constraints due to budget reductions
- Managing two (competing) contractor teams
 - Information Separation
 - Workload and division of labor
 - GFP delivery

Maintaining Fair Competition

- Managed two unique contractor approaches and organizational structures
- Prevented technical transfer
 - Ideas from KTR A getting to KTR B, vice versa

- Prevented unfair competitive advantage
 - Contractor with access to useful information and resources
- Briefed Rules of Engagement to government stakeholders and contractors early

Minimizing Requirements Creep

- Demo actually provided a mechanism for managing requirements creep
 - Contract structured to allowed for some, but not significant, changes to requirements
 - Became a powerful control on new requirements
- Still had numerous stakeholders who wanted to add "new" requirements
- Strong leadership at AFSPC significantly contributed to minimized requirements creep
- A handful of critical new requirements and fact-of-life changes were incorporated, but "creep" was controlled

Demonstration Phase Results

- Competition provided increased capability at lower cost
- Government input (both user and acquirer) improved Contractor's:
 - Understanding of requirements
 - Final design
 - Operations and sustainment concepts
- Legacy transition schedule refined
- Key system capabilities validated
 - Technical risk baseline updated
- Strong government/contractor IPT involvement
 - AFSPC users/staff were integrated into all aspects of program development
 - Foundation for continued participation in Development Phase

Global Network – Global Power

Lessons Learned

- Ensure balance of competition & fairness in downselect process
- Extend competitive phase timeline
 - Requirements refinement
 - Development of preliminary designs
- Increase support from legacy satellite and ground system contractors
 - Explanation of operations plans and satellite constraints
 - Analysis of satellite databases

Integrated Product Development Organization

Development Approach

- High degree of operator involvement
 - Guaranteed availability of key personnel throughout transition period
 - Operators integrated into IPTs
 - Explain current operational procedures and satellite constraints
 - Refine development requirements
 - Satellite operations
 - HMI design
 - Documentation of procedures

Development Approach (Cont'd)

- Positive control of requirements change
 - Approval hierarchy: Squadron-Wing-Headquarters
 - Program Configuration Control Board
 - Review/approval of DOORS change proposals
- Extensive IPT Coordination
 - Issues worked at lowest level IPT
 - Integration of issues at higher-level IPTs

Conclusions

- CCS-C acquisition strategy was a success
 - Competition resulted in greater capability at lower cost
- Operator involvement at all steps is an essential factor for system buy-in
 - Understanding how acquisition process affects outcome
 - Being flexible in requirements definition and change
 - Actively supporting system development and transition

Backup Charts

Risk Baseline

