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The waterflow lifecycle revisited

Is there a consensus that architecture is a pervasive 
concern?

Issue: Architecture as a document vs. an engineering model
Is there a continuity of architecture throughout?

Issue: Traceability back and forth among phases
Do we need architecture everywhere?

Issue: Representation & semantics of architecture in each phase
Is Architectural change propagation cost-effective?

Issue: transforming from one phase to the next (manual, assisted, …)
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The Mission Data System 
perspective

The process methodology is flexible…
… as long as State Analysis is applied throughout

Subtle difference between:
Explicit architecture representation everywhere
Explicit architecture awareness
The former is “nice to have”
The latter is a pragmatic tradeoff for size & fit
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Type
information

- procedural code
- functions
- classes (OO)

Instance
information

- variables
- events
- objects

- function calls
- symbolic references/linkages
- shared variables
- ad-hoc runtime mechanisms

Composition
Mechanisms

(how is it built?)

Description
Mechanisms

(what’s inside?)
- ad-hoc runtime mechanisms

Code level Different Levels of 
Abstractions

Similar
Dimensions of 

Concerns - types 
(from state analysis)
State variables
Achievers, etc…

- domain-specific types
Units, etc…

- instances 
(from state analysis)

- subject to lower-level
mechanisms

- subject to lower-level
mechanisms

System 
Architecture

Software Architecture 
Bridges the Gap !

State Analysis & SW Architecture

- methods
- interfaces (sets of methods)
- ports (interface signature)
- components (sets of ports)
- connectors (sets of ports)
- hierarchical composition

- component instances
- connector instances
- links (pairs of port bindings)
- hierarchical composition

- prescription languages
(requires type database)
Base schema: xADL instances
Extensible via XML schemas
Compressible via transformations

- description languages
(requires instance database)
Base schema: xADL instances
Extensible via XML schemas
Compressible via transformations

Component Architecture



Architecture Composition in MDS

xADL extension for component/connector implementation inheritance
Separation of structure (defined in xADL) & implementationDesign

Analysis

Coding

Compile

Link

Execution

xADL extension for component/connector implementation inheritance
Separation of structure (defined in xADL) & implementation
Architecture profiling for optimizing transformations of xADL to code

Packaging of architecture elements into shared objects
Dynamic registration of architecture elements at shared object init/fini

Extensible prescription protocols support connector optimizations
Architecture evolution includes types & instances

Type reconfiguration via dynamic object loading/unloading
Instance reconfiguration via prescription changes



The architecture waterflow

Key underlying principles
Easy to do the right thing
Eliminate semantic replication
Plan for technology evolution
Low buy-in cost of adoption
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State analysis

Software architecture

Algorithms

Target Configuration

Scenarios

Results

System Configuration

Evolution of the State Database

Model-based transformation
- user-assisted process
- more than just “code generation”
- rigorous mapping of input/output theories


