
From cradle to grave:
An architecture substrate for 
software lifecycles

Nicolas Rouquette
Principal Member of Technical Staff

Jet Propulsion Laboratory
California Institute of Technology



The waterflow lifecycle revisited

Is there a consensus that architecture is a pervasive 
concern?

Issue: Architecture as a document vs. an engineering model
Is there a continuity of architecture throughout?

Issue: Traceability back and forth among phases
Do we need architecture everywhere?

Issue: Representation & semantics of architecture in each phase
Is Architectural change propagation cost-effective?

Issue: transforming from one phase to the next (manual, assisted, …)

DesignAnalysis Coding Compile Link ExecutionPhases

Style1Architecture Style2 Style3 Style4 Style5 Style6



The Mission Data System 
perspective

The process methodology is flexible…
… as long as State Analysis is applied throughout

Subtle difference between:
Explicit architecture representation everywhere
Explicit architecture awareness
The former is “nice to have”
The latter is a pragmatic tradeoff for size & fit

DesignAnalysis Coding Compile Link ExecutionPhases



Type
information

- procedural code
- functions
- classes (OO)

Instance
information

- variables
- events
- objects

- function calls
- symbolic references/linkages
- shared variables
- ad-hoc runtime mechanisms

Composition
Mechanisms

(how is it built?)

Description
Mechanisms

(what’s inside?)
- ad-hoc runtime mechanisms

Code level Different Levels of 
Abstractions

Similar
Dimensions of 

Concerns - types 
(from state analysis)
State variables
Achievers, etc…

- domain-specific types
Units, etc…

- instances 
(from state analysis)

- subject to lower-level
mechanisms

- subject to lower-level
mechanisms

System 
Architecture

Software Architecture 
Bridges the Gap !

State Analysis & SW Architecture

- methods
- interfaces (sets of methods)
- ports (interface signature)
- components (sets of ports)
- connectors (sets of ports)
- hierarchical composition

- component instances
- connector instances
- links (pairs of port bindings)
- hierarchical composition

- prescription languages
(requires type database)
Base schema: xADL instances
Extensible via XML schemas
Compressible via transformations

- description languages
(requires instance database)
Base schema: xADL instances
Extensible via XML schemas
Compressible via transformations

Component Architecture



Architecture Composition in MDS

xADL extension for component/connector implementation inheritance
Separation of structure (defined in xADL) & implementationDesign

Analysis

Coding

Compile

Link

Execution

xADL extension for component/connector implementation inheritance
Separation of structure (defined in xADL) & implementation
Architecture profiling for optimizing transformations of xADL to code

Packaging of architecture elements into shared objects
Dynamic registration of architecture elements at shared object init/fini

Extensible prescription protocols support connector optimizations
Architecture evolution includes types & instances

Type reconfiguration via dynamic object loading/unloading
Instance reconfiguration via prescription changes



The architecture waterflow

Key underlying principles
Easy to do the right thing
Eliminate semantic replication
Plan for technology evolution
Low buy-in cost of adoption

DesignAnalysis Coding Compile Link Execution

Style1 Style2 Style3 Style4 Style5 Style6

State analysis

Software architecture

Algorithms

Target Configuration

Scenarios

Results

System Configuration

Evolution of the State Database

Model-based transformation
- user-assisted process
- more than just “code generation”
- rigorous mapping of input/output theories


