Managing COTS Integration for High Integrity Systems: Observations from the COCOTS Database

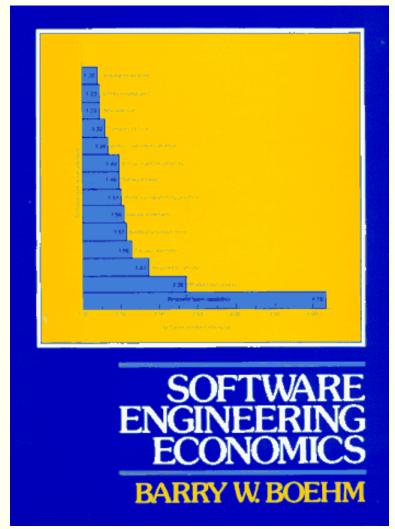
Betsy Clark

March 5, 2003

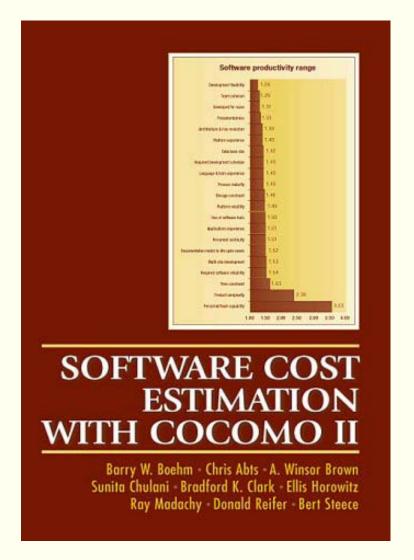
GSAW 2003

This work is sponsored by the FAA's Software Engineering Resource Center

Topics Covered


- Background
- Some empirical observations about the use of COTS in high integrity systems
 - Types of products
 - Attributes considered in evaluating COTS
 - Strategies observed
- Conclusions

Background


- Empirical observations come from COCOTS database
- Constructive COTS Model
 - Estimation tool
 - Analysis tool
- Part of the COCOMO suite of tools
 - Open model
 - In the public domain

COCOMO 81 (1981)

Software Metrics, Inc.

COCOMO II (2000)

COCOTS

- Sponsored by FAA's Software Engineering Resource Center (SERC)
- Calibrated with data from twenty projects
 - 11 can be classified as "high integrity"
 - 9 are other (business, support systems)

"High Integrity" COTS-Based Systems in COCOTS Database

- Classification based on whether or not system is safety-critical
- Most of these systems operate 24/7
- Eleven total
 - 5 are Air Traffic Management (FAA)
 - 3 are Air-to-Ground Communication (FAA)
 - 1 is Radar Processing (FAA)
 - 1 is Missile Tracking (Air Force)
 - 1 is Satellite Control (NASA)

Questions Asked about COTS and High Integrity Systems

- What types of COTS products do they use?
- What attributes do they consider when selecting a product?
- What strategies do they use to ensure system integrity?

Defining COTS

- Commercial-Off-The-Shelf Software
 - Sold, leased, licensed at advertised prices
 - Source code unavailable
 - Periodic releases with feature growth and fixes
 - Eventual obsolescence, end of life
- Each part of this definition has implications

Implications

Sold, leased, licensed at advertised prices

- Market forces play an important role
- Success or failure is no longer simply a technical issue
- Is it in the vendor's interest to be cooperative?
- Will the vendor be in business in a few years?

Implications -2

Source code unavailable

- If the source code is available for modification, from an estimating perspective, this is a case of reuse
 - Effort is a function of lines of code to be understood, added, modified, deleted
- Without source code, activities change
- Assessing/evaluating
 - Tailoring (using vendor-provided mechanisms)
- - Writing glue code
 - These are the activities that are modeled by COCOTS

Implications - 3

Periodic releases with feature growth and fixes Eventual obsolescence, end of life

- Requires continual upgrades to avoid end of life
- You have no control over product evolution
- Maintenance complexity grows very quickly with the number of COTS products

Topics Covered

- Background
- Some empirical observations about the use of COTS in high integrity systems
 - Types of products
 - Attributes considered in evaluating COTS
 - Strategies observed
 - Lessons learned
- Conclusions

Types of COTS Products

Type of Product	Projects Using
operating system(s)	91%
GUI generator	73%
DBMS	55%
network management	27%
communications protocol	18%
disk array	18%
data warehouse, device drivers, telemetry processing, off-line analysis tools, C++ class library	9%

Something interesting is going on...

- The 9 projects that were NOT classified as "high integrity" almost never mentioned operating systems and other infrastructure as COTS
 - Why not?
- What they did mention were higher-level applications
 - e.g., Oracle Financials
- Which leads to another interesting part of the definition of COTS

Revisiting the Definition of COTS

- People view "COTS" as products that are associated with some risk
 - Point made by Vic Basili during keynote address at ICCBSS 2003
- For our set of high integrity systems, operating systems are viewed as a source of risk and are subject to risk-mitigation activities, e.g.
 - Assessment before buying
 - Purchasing source code
- Not the case for the other (non high-integrity) systems

Topics Covered

- Background
- Some empirical observations about the use of COTS in high integrity systems
 - Types of products
- → Attributes considered in evaluating COTS
 - Strategies observed
 - Conclusions

Attributes Considered in Selecting COTS Products: "High Integrity" CBS

Rank Order by Frequency

- Product Performance (throughput, response time)
- Inter-component compatibility
- Availability/Robustness (fault tolerance, input error tolerance, reliability)
- Functionality
- Price
- Vendor support (response time for critical problems)
- Product and Vendor Maturity
- Understandability (documentation quality, testability)
- Version compatibility (upward, downward)
- Ease of use
- Correctness
- Flexibility, extendibility
- Vendor concessions (access to source code)
- Installation ease
- Portability
- Security
- User training

Topics Covered

- Background
- Some empirical observations about the use of COTS in high integrity systems
 - Types of products
 - Attributes considered in evaluating COTS
- → Strategies observed
 - Conclusions

Strategies Observed to Ensure System Availability/Reliability

- Fault-tolerant architectures
- Detailed evaluations before purchasing COTS
- Use of mature components
- Support agreements requiring 24-hour response time for critical problems
- Purchase of source code

Maintenance Challenges

- Managing COTS volatility (new versions over time)
 - Lots of time spent analyzing impact of upgrading to new versions
- Initial observations suggest a non-linear impact of the sheer number of products on maintenance complexity
 - Multiple configurations make this much worse

Strategies to Address Maintenance

- Glue code wrappers
 - Used to hide functionality to allow upgrades without impacting rest of system
 - "We wanted to be able to replace a product without damage. As an example, we have a wrapper around the data base. It could be a flat file, relational...the custom application doesn't care."
- Freezing configuration (not upgrading any COTS products) while purchasing source code for critical components
- Distinguishing between critical and non-critical components with focus on the former to avoid end-oflife

Conclusions: COTS and High Integrity Systems

- Observations from the COCOTS Database
 - Types of Products
 - Infrastructure
 - GUI generators
 - DBMS
 - Attributes Evaluated
 - Product performance
 - Interoperability
 - Availability/fault tolerance
 - Challenges faced
 - Ensuring reliability and availability in the initial system
 - Maintenance
 - Strategies
 - Variety of strategies including detailed evaluations, purchase of source code, use of mature components
 - Maintenance strategies ranged from freezing the configuration to use of wrappers to minimize negative impact of upgrades

Software Metrics, Inc.

Plea for more data!

Betsy Clark

(703) 754-0115

Betsy@software-metrics.com

Chris Abts

(979) 862-8055

cabts@cgsb.tamu.edu

cabts@sunset.usc.edu

For more information about COCOTS http://sunset.usc.edu

Questions?

