
smiSoftware Metrics, Inc.

Managing COTS Integration for High
Integrity Systems:

Observations from the COCOTS Database

Betsy Clark
March 5, 2003

GSAW 2003

This work is sponsored by the FAA’s Software Engineering Resource Center

2smiSoftware Metrics, Inc.

Topics Covered

• Background
• Some empirical observations about the use of COTS

in high integrity systems
– Types of products
– Attributes considered in evaluating COTS
– Strategies observed

• Conclusions

3smiSoftware Metrics, Inc.

Background

• Empirical observations come from COCOTS
database

• Constructive COTS Model
– Estimation tool
– Analysis tool

• Part of the COCOMO suite of tools
– Open model
– In the public domain

4smiSoftware Metrics, Inc.

COCOMO 81 COCOMO II
(1981) (2000)

5smiSoftware Metrics, Inc.

COCOTS

• Sponsored by FAA’s Software Engineering Resource
Center (SERC)

• Calibrated with data from twenty projects
– 11 can be classified as “high integrity”
– 9 are other (business, support systems)

6smiSoftware Metrics, Inc.

“High Integrity” COTS-Based Systems
in COCOTS Database

• Classification based on whether or not system is
safety-critical

• Most of these systems operate 24/7
• Eleven total

– 5 are Air Traffic Management (FAA)
– 3 are Air-to-Ground Communication (FAA)
– 1 is Radar Processing (FAA)
– 1 is Missile Tracking (Air Force)
– 1 is Satellite Control (NASA)

7smiSoftware Metrics, Inc.

Questions Asked about COTS and High
Integrity Systems

• What types of COTS products do they use?
• What attributes do they consider when selecting a

product?
• What strategies do they use to ensure system

integrity?

8smiSoftware Metrics, Inc.

Defining COTS

• Commercial-Off-The-Shelf Software
– Sold, leased, licensed at advertised prices
– Source code unavailable
– Periodic releases with feature growth and fixes
– Eventual obsolescence, end of life

• Each part of this definition has implications

9smiSoftware Metrics, Inc.

Sold, leased, licensed at advertised prices

– Market forces play an important role
– Success or failure is no longer simply a technical issue
– Is it in the vendor’s interest to be cooperative?
– Will the vendor be in business in a few years?

Implications

10smiSoftware Metrics, Inc.

Implications -2

Source code unavailable

– If the source code is available for modification, from an
estimating perspective, this is a case of reuse

• Effort is a function of lines of code to be understood, added,
modified, deleted

– Without source code, activities change
• Assessing/evaluating
• Tailoring (using vendor-provided mechanisms)
• Writing glue code

– These are the activities that are modeled by COCOTS

11smiSoftware Metrics, Inc.

Periodic releases with feature growth and fixes
Eventual obsolescence, end of life

– Requires continual upgrades to avoid end of life
– You have no control over product evolution
– Maintenance complexity grows very quickly with the number

of COTS products

Implications - 3

12smiSoftware Metrics, Inc.

Topics Covered

• Background
• Some empirical observations about the use of COTS

in high integrity systems
– Types of products
– Attributes considered in evaluating COTS
– Strategies observed
– Lessons learned

• Conclusions

13smiSoftware Metrics, Inc.

Types of COTS Products

9%data warehouse, device drivers, telemetry
processing, off-line analysis tools, C++ class
library

18%disk array

18%communications protocol

27%network management

55%DBMS

73%GUI generator

91%operating system(s)

Projects UsingType of Product

14smiSoftware Metrics, Inc.

Something interesting is going on…

• The 9 projects that were NOT classified as “high
integrity” almost never mentioned operating systems
and other infrastructure as COTS
– Why not?

• What they did mention were higher-level applications
– e.g., Oracle Financials

• Which leads to another interesting part of the
definition of COTS

15smiSoftware Metrics, Inc.

Revisiting the Definition of COTS

• People view “COTS” as products that are associated
with some risk
– Point made by Vic Basili during keynote address at ICCBSS

2003
• For our set of high integrity systems, operating

systems are viewed as a source of risk and are subject
to risk-mitigation activities, e.g.
– Assessment before buying
– Purchasing source code

• Not the case for the other (non high-integrity) systems

16smiSoftware Metrics, Inc.

Topics Covered

• Background
• Some empirical observations about the use of COTS

in high integrity systems
– Types of products
– Attributes considered in evaluating COTS
– Strategies observed

• Conclusions

17smiSoftware Metrics, Inc.

• Rank Order by Frequency

– Product Performance (throughput, response time)
– Inter-component compatibility
– Availability/Robustness (fault tolerance, input error tolerance, reliability)
– Functionality
– Price
– Vendor support (response time for critical problems)
– Product and Vendor Maturity
– Understandability (documentation quality, testability)
– Version compatibility (upward, downward)
– Ease of use
– Correctness
– Flexibility, extendibility
– Vendor concessions (access to source code)
– Installation ease
– Portability
– Security
– User training

Attributes Considered in Selecting COTS
Products: “High Integrity” CBS

M
or

e
fr

eq
ue

nt

18smiSoftware Metrics, Inc.

Topics Covered

• Background
• Some empirical observations about the use of COTS

in high integrity systems
– Types of products
– Attributes considered in evaluating COTS
– Strategies observed

• Conclusions

19smiSoftware Metrics, Inc.

Strategies Observed to Ensure System
Availability/Reliability
• Fault-tolerant architectures
• Detailed evaluations before purchasing COTS
• Use of mature components
• Support agreements requiring 24-hour response time

for critical problems
• Purchase of source code

20smiSoftware Metrics, Inc.

Maintenance Challenges

• Managing COTS volatility (new versions over time)
– Lots of time spent analyzing impact of upgrading to new

versions
• Initial observations suggest a non-linear impact of the

sheer number of products on maintenance
complexity
– Multiple configurations make this much worse

21smiSoftware Metrics, Inc.

Strategies to Address Maintenance

• Glue code wrappers
– Used to hide functionality to allow upgrades without

impacting rest of system
“We wanted to be able to replace a product without damage. As an

example, we have a wrapper around the data base. It could be a
flat file, relational…the custom application doesn’t care.”

• Freezing configuration (not upgrading any COTS
products) while purchasing source code for critical
components

• Distinguishing between critical and non-critical
components with focus on the former to avoid end-of-
life

22smiSoftware Metrics, Inc.

Conclusions: COTS and High Integrity
Systems
• Observations from the COCOTS Database

– Types of Products
• Infrastructure
• GUI generators
• DBMS

– Attributes Evaluated
• Product performance
• Interoperability
• Availability/fault tolerance

– Challenges faced
• Ensuring reliability and availability in the initial system
• Maintenance

– Strategies
• Variety of strategies including detailed evaluations, purchase of source

code, use of mature components
• Maintenance strategies ranged from freezing the configuration to use of

wrappers to minimize negative impact of upgrades

23smiSoftware Metrics, Inc.

Plea for more data!

Betsy Clark
(703) 754-0115

Betsy@software-metrics.com

Chris Abts
(979) 862-8055

cabts@cgsb.tamu.edu
cabts@sunset.usc.edu

24smiSoftware Metrics, Inc.

For more information about COCOTS
http://sunset.usc.edu

25smiSoftware Metrics, Inc.

Questions?

