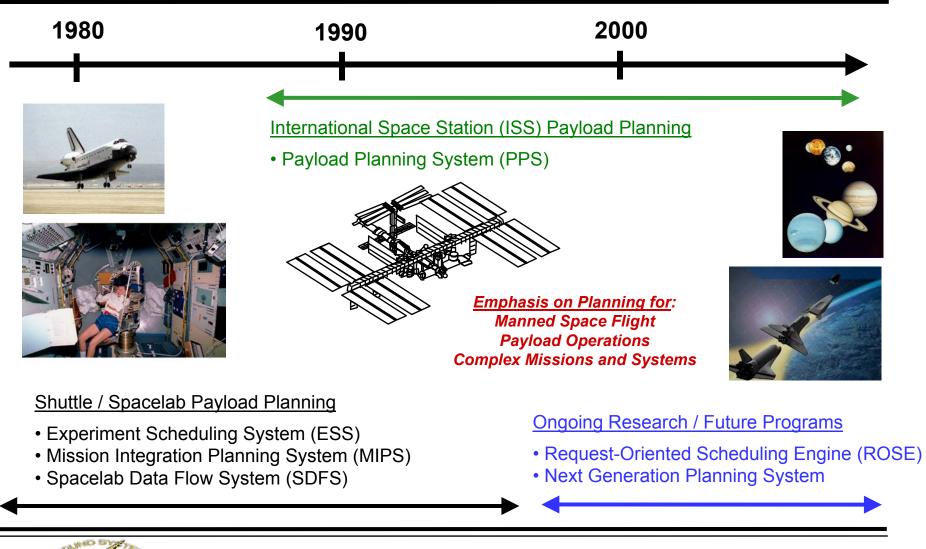


Planning Systems for Distributed Operations

Theresa G. Maxwell

NASA Marshall Space Flight Center Flight Projects Directorate Ground Systems Department Mission Support Systems Group (FD42) 256-544-2232

there sa.g. maxwell @nasa.gov


- Planning Systems Our Heritage
- Evolution of planning systems
- International Space Station Distributed Planning
- Payload Planning System (PPS)
 - PPS Overview
 - User Requirements Collection
 - Activity Scheduling
 - Data System Routing and Configuration
 - Planning Products
- Where Do We Go From Here?
 - Enhance support for distributed planning
 - Robust planning capabilities
- Request-Oriented Scheduling Engine (ROSE)
- Next Generation Planning System
- References

Planning Systems - Our Heritage

PAST: Shuttle/Spacelab – Centralized Planning

- Centralized planning by expert mission planners
- Manpower-intensive planning job
- Limited access to planning software

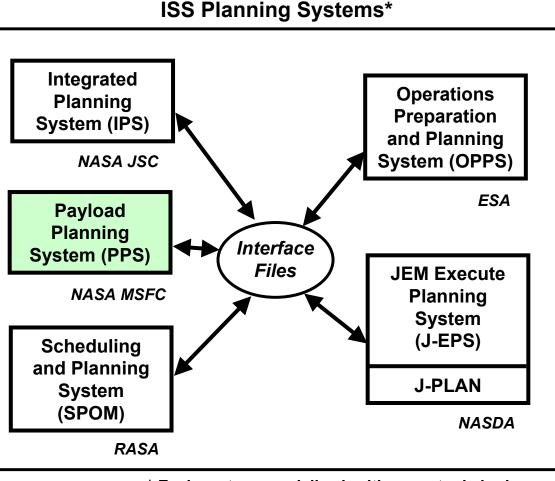
PRESENT: International Space Station (ISS) - Distributed Planning

- Planning functions are distributed to remote experts
 - Multiple space agencies/centers build pieces of ISS plan
 - Remote Payload Developers (PDs) define planning requirements
- Manpower-intensive
- Planning software is distributed
 - Multiple specialized planning systems working in concert
 - Remote PD software access for planning inputs and products

FUTURE: Where Do We Go From Here?

- Enhance support for distributed planning
 - Centralized planning
 - ISS-type distributed planning
 - Alternate concepts (e.g., distribute planning to PDs or Crew)
- Reduce operations costs

- Multiple organizations participate in developing a single integrated plan for ISS operations
 - "Pieces" of the plan developed concurrently by the distributed experts
 - Pieces then integrated

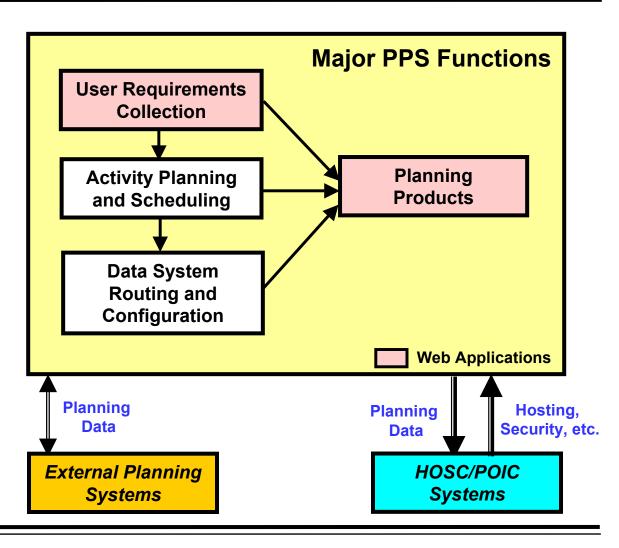

ISS Planning Organizations/Functions:

- NASA Johnson Space Center (JSC)
 - U.S. systems plans
 - Overall ISS plan integration

• NASA Marshall Space Flight Center (MSFC)

- U.S. payload plans
- ISS payload plan integration
- Russian Aviation & Space Agency (RASA)
 - RASA system/payload plans
- National Space Development Agency of Japan (NASDA)
 - NASDA system/payload plans
- European Space Agency (ESA)
 - ESA system/payload plans

* Each system specialized, with some tool sharing

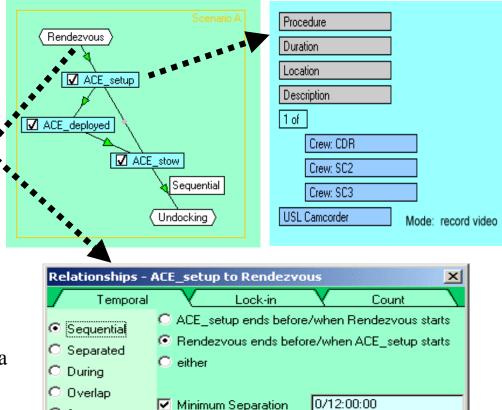


The *Payload Planning System* (PPS) is a software system used at NASA MSFC for the planning of payload operations on the International Space Station (ISS)

- Supports ISS distributed planning
 - U.S. Payload planning
 - Payload plan integration
 - ISS data system planning
- Used for all ISS planning phases (pre-mission, weekly, real-time)
- Re-engineering in progress to better meet user needs, and to reduce long term O&M costs

PPS Users:

- Mission planners at MSFC
- Remote payload users
- Other operations personnel


🔘 % coverage

🔿 Cyclic

C Fragmentable

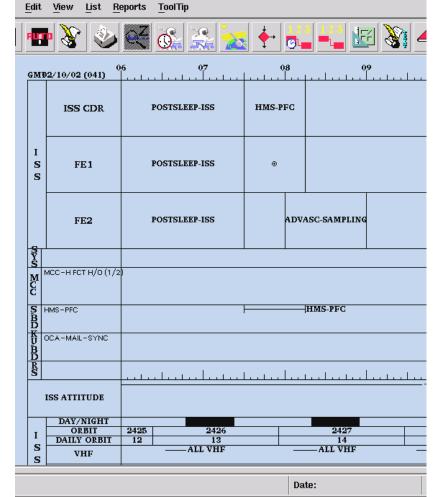
- Web application used by remote payload users to define/submit their planning requirements
- Major functions:
 - Graphical interface for inputting requirements data
 - Sequences of Activities to be planned
 - Repetition/timing requirements
 - Temporal relationships
 - Resource & condition requirements
 - Execution data (procedures, etc.)
 - Verification/Promotion of submitted data
 - Reports
- Developing 'back-end' to automate conversion of user inputs to format required by the scheduling software

Maximum Separation

then the items might touch.

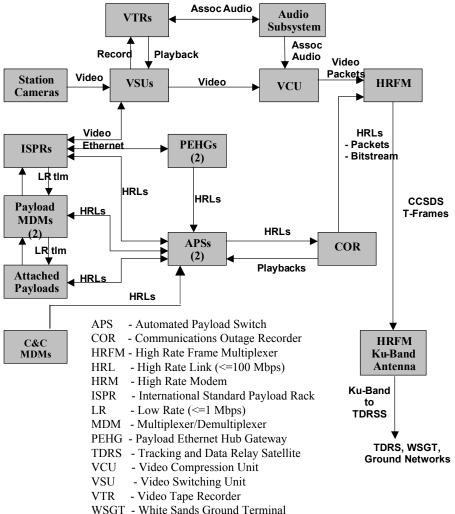
Close

5/00:00:00


If a minimum separation is not specified or is 0,

IELINE: STP08_02FEB10_P

- Utilized by mission planners to generate activity timelines for ISS
- Consolidated Planning System (CPS)
 - Provided by NASA Johnson Space Center
 - All ISS planning systems utilize the CPS software to some degree
- Major functions:
 - Modeling of resource availabilities/constraints
 - Modeling of activities & sequences
 - Interface to flight mechanics software for orbit and communications opportunities
 - Automated planning and scheduling of activities & sequences
 - Resource utilization tracking
 - Timeline editing
 - Integration & verification of multiple timelines
 - Generation of inputs to onboard crew plans (Onboard Short Term Plan – OSTP)



n Pright Project Directorate

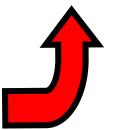
- Utilized by data system planners to plan the routing of digital/video data from onboard sources to the ground
- Centralized function occurring after activity timeline integration
- Major functions:
 - Modeling of onboard data system elements, connectivity, and constraints
 - Automated planning of data system routing and configurations, including:
 - Data routing through onboard system
 - System reconfigurations
 - Recorder fill/dump plans
 - Editing of data system routing and configuration schedules
 - Verification of data system schedules
 - Reports (Data Flow Plan)

PPS - Planning Products

- Web application providing remote access to planning reports
- Major functions:
 - View/print/save a report
 - Specify report parameters
- Reports:
 - Data Flow Plan
 - User Requirements reports
 - Data Producing Activity report
 - Ad hoc reports from PPS database

🎘 Data Flow Plan														
Report Edit View														
Event Time GMT 72 13-Mar-2001 Note*	TDF	288		LR		PL MDM1 Kbps	MR					APS		
	E A S T	W E S T	H S T 4 5 D L H S	P T 5 D L S 1	G F 2 5 0 J 5		M A 1 D L S 2	M D M 2 0 J - 2	X P 3 1 D L S 2	PEHG1 adj Mbps	PEHG2 adj Mbps	APS1 in/out X out	APS2 in/out X out	COR
072/05:00:00 DL - 00:05:00			RR			495	RR	PL RR	RR	0.1	7.0			
072/05:05:00 DL - 00:08:26			RR			475	RR	PL RR	RR	u	n	+PLMDM1/COR4		R/4 0.475 0.0%
072/05:13:26 DL - 00:01:34			RR			H	RR	PL RR	RR	II	II			R/4 0.475 0.29%
072/05:15:00 DL - 00:01:48			RR			n	RR	PL RR	RR		8.0			R/4 0.475 0.34%
072/05:16:48 DL - 00:00:10	кs		RR			485	RR	PL RR	RR			+PLMDM1/HRFM4		R/4 0.485 0.4%
072/05:16:58 DL - 00:03:02	KS		RR			u	RR	PL RR	RR	u	u			STANDBY 0.4%
072/05:20:00 DL - 00:01:00	кs		RR			II	RR		RR	2.1	4.0	+PEHG1/HRFM1		n
072/05:21:00 DL - 00:05:00	KS		RR			u	RR		RR	u	н	+ZOE15.ZPR/HRFM3		n
072/05:26:00 DL - 00:02:17	кs		RR			II	RR		RR	n	II			n

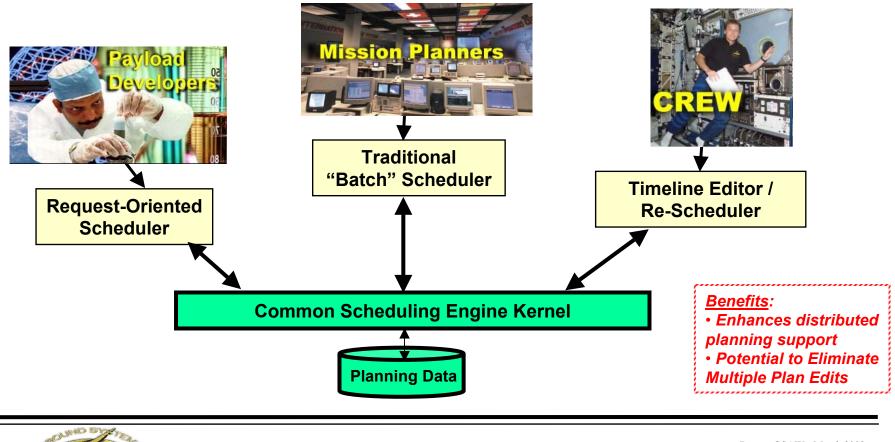
GOAL: Enhance Support for Distributed Planning

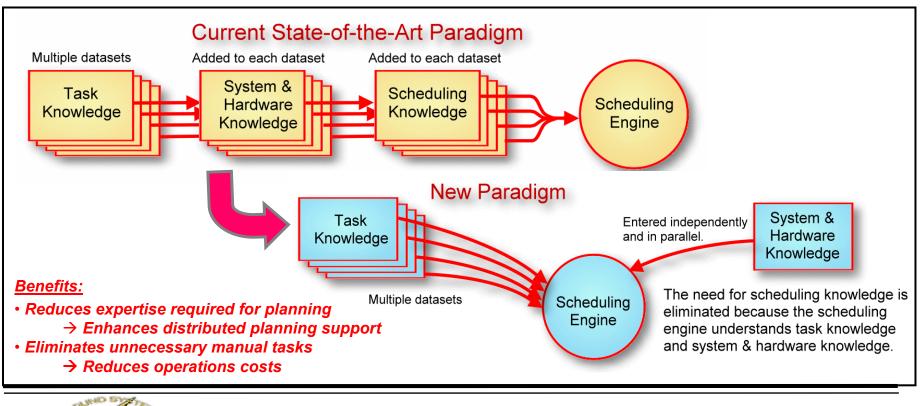

- Remote access to planning tools & data
- Architectures which support distributed planning
- Reduce special expertise needed to perform planning

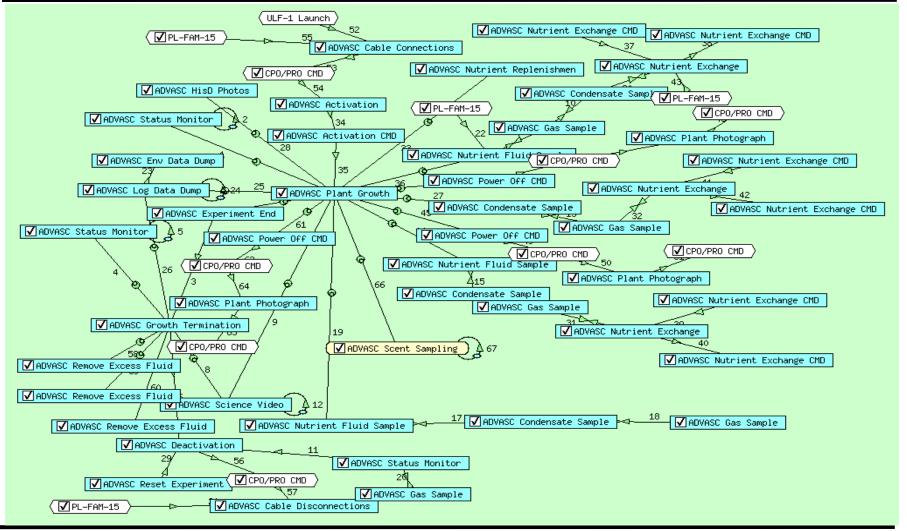
Need Robust Planning Capabilities

GOAL: Reduce Operations Costs

- Eliminate unnecessary manual tasks
- Better integrate multiple planning functions, e.g.,
 - Activity planning/scheduling
 - Data system planning
 - Other resource planning
- Eliminate multiple plan edits (e.g., Ground & Onboard)




• <u>Our strategy</u>: Develop core capabilities which can be packaged in various ways to distribute planning functions, based on individual expertise and need



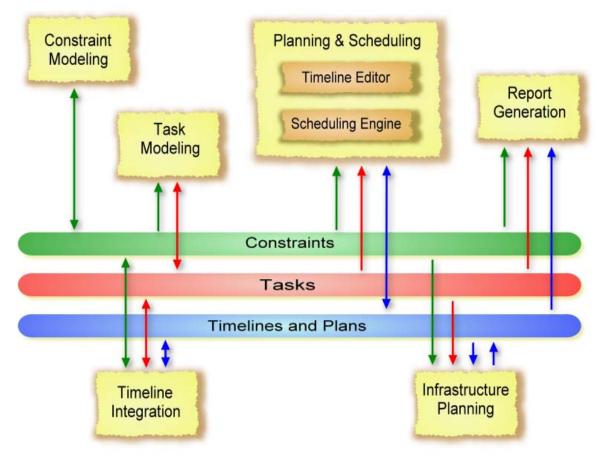
- <u>Our strategy</u>: Enable more automated planning through:
 - Maximally expressive modeling of requirements and constraints
 - Robust scheduling engine which can handle the expressive models

Actual Example of ISS Planning Requirements (ADVASC payload)

Date: GSAW - March 2003 Originator: Theresa Maxwell Page: 14

light Projec Directorate


- Current Ground Systems Department (GSD) research/development project
- Key features:
 - Maximally expressive modeling capability (extensions to URC functionality)
 - Ability to automatically schedule these complex models (in work)
 - Architecture which allows multiple remote customers/users to concurrently add activities to a single timeline


Next Generation Planning System (New development project)

- Generic planning system
 - Modular, extensible, scalable, tailorable
- Modeling/scheduling based on ROSE research
- Adds "*Infrastructure*" planning:
 - Integrated/generic solution for planning of resource usage
 - e.g., resource loading, routing, & replenishment; equipment configuration and setup

<u>Benefits:</u> Better integrates multiple planning functions, e.g.,

- Activity scheduling
- Data system planning
- Other resource planning

For more information, please visit the following sites:

- Ground Systems Department (GSD) customer page
 <u>https://gsd.msfc.nasa.gov/</u>
- Payload Planning System (PPS)

https://gsd.msfc.nasa.gov/PPS/

• Request-Oriented Scheduling Engine (ROSE)

https://gsd.msfc.nasa.gov/ROSE/

- Interim User Requirements Collection (iURC) software <u>https://gsd.msfc.nasa.gov/iURC/</u>
- Published technical papers

https://gsd.msfc.nasa.gov/FD40/papers/

ADVASC	Advanced Astroculture
CPS	Consolidated Planning System
DSRC	Data System Routing and Configuration
FPD	Flight Projects Directorate
GSD	Ground Systems Department
HOSC	Huntsville Operations Support Center
iURC	Interim User Requirements Collection
ISS	International Space Station
MSFC	Marshall Space Flight Center
NASA	National Aeronautics and Space Administration
PD	Payload Developer
POIC	Payload Operations Integration Center
PPS	Payload Planning System
ROSE	Request-Oriented Scheduling Engine
URC	User Requirements Collection

