

Case for Deploying Complex Systems Utilizing Commodity Components

Barry S. Bryant barry.s7.bryant@lmco.com Phone 256-544-7404 R. Lee Pitts robert.l7.pitts@lmco.com Phone 256-544-0666 Marshall Space Flight Center Lockheed Martin Space Operations

LOCKNEED MART

Page: 1 March 27, 2003

Introduction

LOCKHEED MARTIN

Page: 2 March 27, 2003

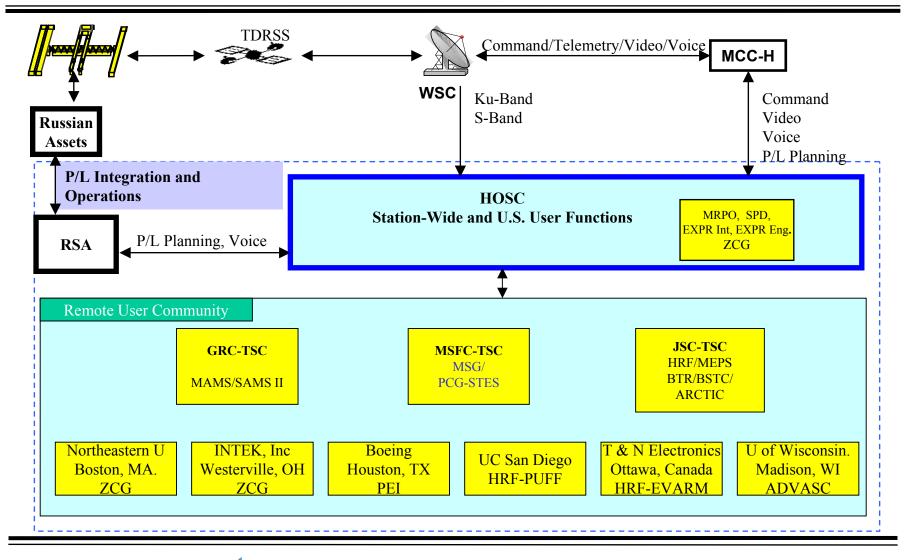
- The primary focus of this presentation is the transition of a Space Station ground system from a client/server UNIX based system to a client/server system based on commodity priced and open system components
- In covering this transition, the presentation will discuss
 - A definition of the **HOSC Ground System** and its capabilities in order to lay the ground work for the transition
 - The reasons why the transition was necessary in **Motivation for Change**
 - Several methodologies or **Options** that were considered once the decision was made that some change was required
 - The **Goals** that were identified early in the transition process
 - The primary **Initiatives** that were identified, approved and implemented as part of the transition
 - The methods used to identify, define, gain approval and implement the initiatives in **Conclusions**

HOSC Ground Systems

LOCKNEED MARTIN

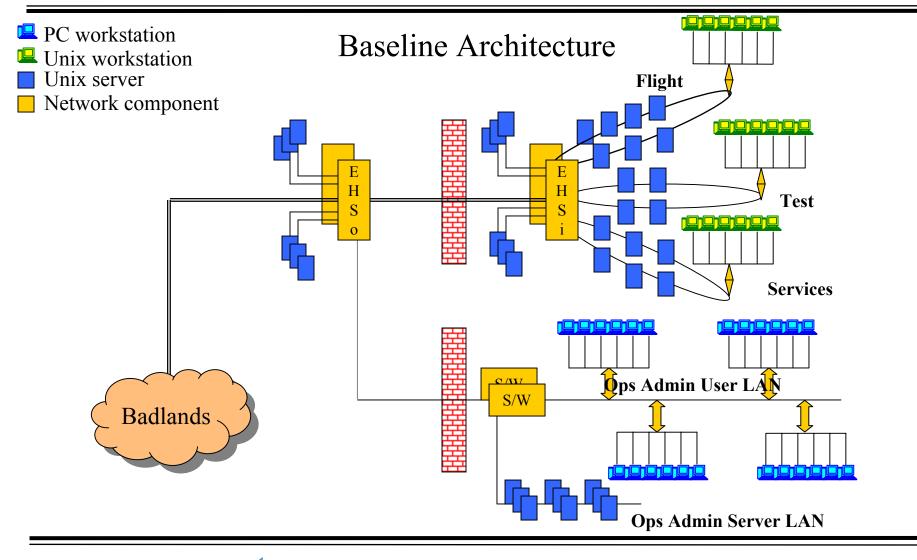
Page: 4 March 27, 2003

- The HOSC hosts the ground systems for all payloads in the US portion of the International Space Station
 - The HOSC is a multi-mission facility
 - ISS Operations supports a diverse user base of payload investigators
 - Payload systems managers (Cadre) are located at the HOSC
 - Payload users may be located locally or remotely with all services available
 - Two major systems in the HOSC architecture are
 - <u>Enhanced HOSC System</u> (EHS)
 - <u>Payload Data Services System</u> (PDSS)
 - The HOSC supports STS launch activities
 - HOSC systems are online locally at KSC to support ISS payload test and integration
 - A primary HOSC component (EHS) serves as the ground system for the Chandra X-Ray Observatory in Cambridge, Mass.
 - The HOSC systems are designed to provide support from single users up to large facilities



Page: 5 March 27, 2003

HOSC Ground Systems


Increment 5 Interfaces

LOCKNEED MARTIN

Page: 6 March 27, 2003

Page: 7 March 27, 2003

- EHS is the ISS ground system utilized primarily by the HOSC Cadre (payload managers) located at the HOSC
 - Multi-tasking server environment developed and executing on a UNIX OS
 - ISO/OSI compliant communications stack implemented to approved and established standards
 - EHS applications are built to ANSI C language standards and are POSIX compliant
 - Database applications use a modern DBMS with the data presentation layer supported by a standard SQL interface
 - Standards based Data Presentation Layer for
 - EHS WEB based applications
 - X-windows protocol for EHS X-Windows based applications
 - Security for access control is based on user profiles/roles
 - System-wide Monitor and Control and Network Management functions
 - Failover capability for all EHS critical components
 - Homogeneous client-server UNIX workstation environment

- EHS is the ISS ground system utilized primarily by the HOSC Cadre (payload managers) located at the HOSC
 - EHS ground system services are
 - Command Processing
 - Telemetry Processing
 - Payload Information Management System
 - Data Acquisition & Distribution
 - Database Services
 - Operations Control Mission Software
 - System Services
 - System Monitor & Control
 - Web Infrastructure
 - Utilities

EHS is the gateway ground system for users of the International Space Station!

CKHEED MA

Page: 9 March 27, 2003

- PDSS is the ground distribution system for ISS science data
 - PDSS receives input data as
 - 192 kbps S Band ISS Realtime data stream
 - 36 packets per second
 - 43 (soon to be 130) Mbps Ku Band ISS Realtime data stream
 - Approximately 8,000 CADU per second
 - Up to 82,000 CCSDS packets per second
 - Encapsulates CCSDS packets and BPDUs in EHS headers for further processing
 - Generates and distributes data stream statistics
 - Multithreaded UNIX server environment
 - Highly available storage for up to 24 months of user science data

PDSS provides a standard delivery method for science data to users of the ISS!

LOCKNEED MARTIN

Page: 10 March 27, 2003

Motivation for Change

LOCKNEED MARTIN

Page: 11 March 27, 2003

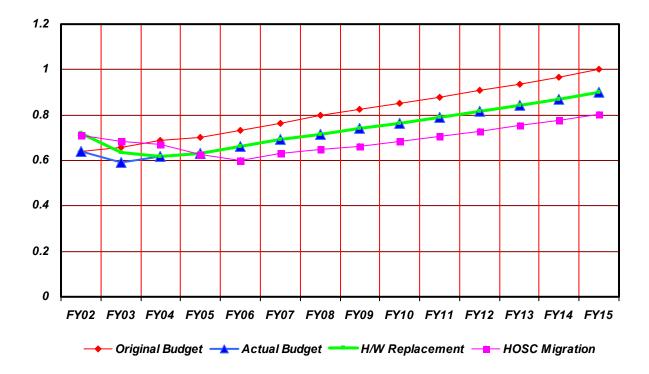
- The HOSC has a stable and generic requirements base
 - ISS and Chandra programs are supported on-orbit with solid capabilities
 - Application code was developed to encompass general operational capabilities
 - Redundant or obsolete capabilities and features have been identified
 - New capabilities and features can be incorporated and will reduce cost while enhancing operability
 - Highly available storage
 - Fault tolerant systems
 - Consolidation of COTS products which accomplish similar tasks
 - Introduction of high performance network hardware
 - Introduction CISC servers (Intel type processors)

CKHEED MA

Page: 12 March 27, 2003

- The HOSC has been a success and is vigorously supporting the ISS
 - Success brought in new users and more opportunity
 - ISS expansion has increased the number of HOSC users and the way the HOSC services are utilized
 - Payload users want to conduct operations at home
 - More users desire access to ISS related data; i.e. collaboration, schools
 - These opportunities are good but puts stress on the current system and points to new needs of the community
- Primary platforms (servers and workstations) were reaching the End-of-Life
 - Some in excess of 5 years old and could no longer be expanded
- Concern over long term vendor viability
- Waning/non-responsive support for COTS products on the primary vendor
- High cost per seat for replacement/maintenance
 - Over 130 workstations
 - Over 75 servers from low-end single processor to high-end SMP

Page: 13 March 27, 2003


- Flight users requirements forced multiple platform types
- Other vendors platforms are in various stages of obsolescence
- ISS overruns in some areas required cut-backs across many ISS elements
- Projected budget would increase by 42 % by 2012 with no refurbishment
- A onetime hardware refurbishment would increase the total growth to 91% of the original budget with little discretionary money
- COTS packages contribute to an ever increasing cost spiral
 - Many COTS are underutilized
 - COTS have a life of their own and often are renewed beyond their need
 - Integrating COTS is expensive
 - COTS and O/S versions must be complementary
 - Vendor support may wane or force jumps in versions to support capabilities
 - Some vendors use proprietary methods which may not be interoperable
 - In 1999, the HOSC had over 60 COTS products

Page: 14 March 27, 2003

Normalized Cost Comparison

LOCKNEED MARTIN

Page: 15 March 27, 2003

- Proposals were detailed and prototyped based on commodity items and open systems
 - Promote a cost model which is sustainable by using commodity hardware
 - By consolidating servers, less platforms will have to be managed
 - By building refurbishment into the model, our systems will not become obsolete
 - By using commodity platforms, market forces will keep cost down and users will be familiar with the interfaces
 - Wise use of COTS will reduce recurring cost and increase satisfaction with COTS
 - New technologies may significantly reduce cost during the refurbishment

CKHEED MA

Page: 16 March 27, 2003

Options

LOCKNEED MARTIN

Page: 17 March 27, 2003

- Continue On (replace servers and workstations one for one)
 - Replace systems without incorporating operational lessons learned
 - Risk to user services is minimal
 - Primary effort is to replace aging hardware
 - Minimal software changes required
 - One for one replacement would have cost nearly as much as the initial outfitting
- Complete Re-Baseline
 - One option considered was to transition to an entirely PC/W2K environment
 - Another option considered was a mainframe architecture with dumb clients
 - A major paradigm shift was beyond budgetary and philosophical scope

Page: 18 March 27, 2003

- Migrate the HOSC systems incrementally
 - Maintain some old
 - Migrate to like systems, incrementally
 - Preserve the large investment in user products
 - Integrate some new
 - Incorporate high value items that support the needs of the user base
 - Consolidate functions where there is an obvious return on investment
 - Re-evaluate all COTS and isolate or eliminate when possible
 - Evaluate commodity based platforms and opens solutions through prototyping and user testing
 - Migration allows the incremental upgrades while preserving stable user interfaces
 - Technology Insertion
 - Selectively replace pieces of the system where new technologies provide a large advantage over the current capabilities (applies to all baseline options)
 - Upgrade networks
 - Migrate firewalls
 - Migrate from prime/backup RAID storage to central storage

Page: 19 March 27, 2003

Goals

LOCKHEED MARTIN

Page: 20 March 27, 2003

- The goals are high
 - Impact to ongoing operations and scheduled activities must be minimal
 - The Cadre is our primary customer therefore impacts at all levels must be minimized
 - The Cadre supports onsite, 24x7
 - The Cadre interfaces with station crew and ground users
 - Reuse of user products (displays, script, computations, etc)
 - The HOSC has an overall availability record of 99+% that must not be compromised
 - Current numbers for availability are for 98%
 - New systems and capabilities must exist and transition in parallel
 - The HOSC has International and National partners must not be disrupted
 - Users are widely dispersed geographically
 - Only a small subset of users are at the HOSC
 - Users extensive capabilities when operating either locally or remotely must be preserved by agreement

Certification of Flight Readiness (CoFR) will be observed

LOCKNEED MARTIN

Page: 21 March 27, 2003

- The goals are high
 - Impact to ongoing operations and scheduled activities must be minimal
 - The HOSC security model will be maintained and extended
 - The HOSC is IP based and subject to a broad range of attacks
 - The HOSC has tightly regulated internet access
 - A wide variety of counter-measure are employed
 - Security model is broad based and relies on personnel, architectural, and software measures
 - A compromise of security could jeopardize not only the HOSC but any interfaces
 - International Space Station and payloads
 - ESA, NASDA, CSA, RSA, ASI and CONUS partners (TSCs)
 - Johnson Space Flight Center

Disruption of security could be catastrophic for the ISS program

CKHEED MA

Page: 22 March 27, 2003

Initiatives:

- PC Migration
- PIMS Redesign
- PDSS Consolidation
- Server Migration

LOCKNEED MARTI

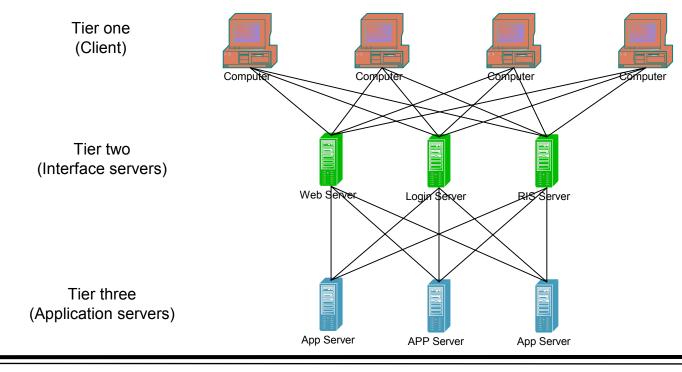
Page: 23 March 27, 2003

- The primary focus of PC Migration is to move critical Cadre end-user applications from expensive UNIX workstations to lower cost Windows 2000 PC platforms
 - EHS PC (EPC) acts as an X-Window server with the workstation software (legacy) running on a UNIX server (RIS/X-Windows Server)
- Advantages
 - Fewer different types of desktop platforms in facility to maintain, test and certify
 - Now all end user client platforms are W2K PCs
 - Significantly cheaper than replacing the EOL UNIX workstations with new UNIX workstations (both initial purchase and recurring license costs)
 - Performance of end-user graphical applications (e.g. Display Ops) improved dramatically
 - New console hardware can be immediately deployed to operational areas
 - Provides low-cost capability for multiple CPUs and display monitors (for improved Cadre task automation/execution), vs. equivalent UNIX W/S implementation

Page: 24 March 27, 2003

- Advantages
 - Provides more user-friendly desktop to Cadre user, including standard COTS tools (Microsoft Word, Excel, Access, etc.), which simplifies training
 - Available with Fast-E (Ethernet) network interface at minimal cost; eliminates "sun setting" Fiber Distributed Data Interface (FDDI) network interface and hardware
 - PCs priced at commodity level; large number of vendors
 - RIS/X-Window Servers provide more efficient usage of expensive UNIX CPUs/applications (through shared CPU/memory/disk vs. individual workstations)
 - Greater expandability options for CPUs and memory that benefit more than one user
 - The RIS/X-Window Server only performs the "x-client" function
 - The "X-server" function is offloaded to the PC, which has significantly better graphics performance and response
 - Reduced reconfiguration times and complexity (i.e., ~ 3-4 servers to reconfigure rather than 40+ workstations for a support activity such as flight)

Page: 25 March 27, 2003


- Advantages
 - PCs have more/better development tools which increases development and maintenance productivity
 - Improved remote access to Cadre products
 - This architecture allows EPCs to be remote to the HOSC and view the same displays that the Cadre is viewing
 - Allows for the reuse of previously developed Cadre products
- Disadvantages
 - Required intensive software development investment
 - Increased risk of software defects due to the redesign and rewrite of certified EHS applications onto the PC platform
 - A single RIS/X-Window server failure will affect multiple users (as compared to the single workstation architecture)

Page: 26 March 27, 2003

- A three tiered architecture was implemented to deploy EHS PC migration
 - This allowed the migration of capabilities independent of the client platform types
 - User workstations were almost immediately replaced with PCs for nearly all systems in the HOSC
 - Tier two devices act to decouple users from the application servers

LOCKHEED MARTIN

- The selected deployment strategy provides for support of legacy X-windows applications in parallel with new Native PC services until each new application is completely certified by the Cadre
 - Provides Cadre fallback position if problems experienced with new applications
- High performance and high throughput client-side applications will be rewritten to run on EPC (native)
 - Will significantly offset the load on RIS/X-window UNIX servers
- PC Migration is being developed in multiple phases/releases
 - Phase 1.0 deployed EPCs in place of operational workstations (completed)
 - Phase 2.0 focused on migrating the initial set of X intensive applications to native Windows 2000 PC architecture (completed)
 - Phase 3.0 primarily focuses on moving the rest of the X intensive applications to native Windows 2000 PC architecture (on schedule 7/03)
 - Phase 4.0 focuses on moving the "generation" applications to EPC (on schedule 1/04)

Page: 28 March 27, 2003

- Change Overview/Description
 - Significant recurring cost reduction was achieved by removing a commercial off the shelf (COTS) product as PIMS workflow engine (replaced with custom developed code)
 - Only a small portion of the COTS product was actually used by PIMS
 - The developed workflow engine was written to meet the PIMS workflow requirements
 - Included several workflow related Engineering Change Requests (ECRs), HOSC Problem Reports (HPRs), and additional customer feedback comments (from Increment 2 users)
- Advantages
 - Eliminated largest recurring COTS software maintenance cost in EHS (>\$300K per year, escalated over 5 years to >\$500K/year)
 - Simplified PIMS server architecture; eliminates many failure points, processes, scripts, and data

Page: 29 March 27, 2003

- Advantages
 - Eliminated costs and risks to keep workflow engine and other COTS compatible with the operating system
 - Improved software transaction control, equating to better data integrity
 - Several related ECRs, HPRs, and other improvements rolled in
 - One year of savings in COTS costs paid for the labor to replace it
- Disadvantages
 - The development effort limited the ability of the PIMS team to incorporate other changes during the implementation timeframe (about 6 months)

CKHEED M.

Page: 30 March 27, 2003

- Change Overview/Description
 - Consolidate Payload Data Services System (PDSS) packet processing, data distribution and data storage functionality onto single platform to reduce operational complexity and cost
 - Project Objectives
 - Reduce the recurring vendor licensing, support, and maintenance fees
 - Reduce the number of system elements to be configured, monitored, and maintained
 - Reduce the number of software lines of code
 - Simplify the Operations interface and system configuration
 - Provide auto fail over capabilities for real time operations
 - Position the system for future data rate increases (150Mbps)
- Advantages
 - Development performed by existing PDSS team
 - Design supports direct applicability into 150Mbps upgrade plans, reducing cost of 150 Mbps upgrade for payloads

Page: 31 March 27, 2003

- Advantages
 - Significant cost savings generated by reduction in annual hardware vendor maintenance
 - Simplified PDSS facility operations by having one PDSS Distribution Server per activity (Flight, Test, Sim)
 - Auto failover capability for flight support
 - Allows end-user to control own real-time destination data routing (instead of PDSS Operator)
 - Phased approach minimizing risks vs. replacing entire system at one time
 - PDSS Server Consolidation estimated to save program over \$1M in maintenance and labor over 5 years
- Disadvantages
 - Additional labor needed for FY02 & FY03 to develop software
 - Investments in hardware upgrades

Page: 32 March 27, 2003

- Data Distribution and Storage Phase I
 - Eliminate 12 production PDSS Data Distribution Enterprise Server class machines to be replaced with Intel/Linux PC workstation class machines
 - Consolidate multiple PDSS processes into a single, multi-threaded process which will perform limited packet processing and all Data Distribution and Storage functions (PDSM)
- Front-End Processors (FEPs) Phase II
 - Implement alternative, less-expensive FEP system (supporting at least 150 Mbps) (+4 systems)
 - Decommission/retire current FEP system (TSI Telsys) hardware/software (- 8 systems)
 - Eliminate Asynchronous Transfer Mode (ATM) switches (- 2 switches)
 - Add full packet processing capabilities to the PDSM server process with auto-fail over capabilities

Page: 33 March 27, 2003

- Change Overview/Description
 - Server Consolidation study task
 - Avoid significantly higher refurbishment costs
 - Identify additional cost reductions that can be realized
 - Major Considerations
 - UNIX servers reach product end-of-life (EOL) in 2003
 - The RDBMS vendor software support on on UNIX servers disappears (January 2006)
 - Potential RDBMS database pricing structure increases

CKHEED MA

Page: 34 March 27, 2003

- The initiative is to port EHS software from UNIX servers to low-cost Linux OS/Intel hardware vendor platform and include some consolidation
 - Platforms involve little to no direct end-user interaction
 - Includes replacement of 30+ aging UNIX servers
 - Allows the server functions to be consolidated to a single platform to support more efficient development and testing
- Advantages
 - Greatly improves deployment and operations costs of services to KSC PTCS POIC, and any potential future "POIC Copy" remote user sites
 - Significantly cheaper than replacing UNIX servers one-for-one
 - Provides greater flexibility in test and operational utilization of EHS servers
 - Allows stepwise enhancements where feasible
- Disadvantages
 - Requires additional software development investment to perform consolidation as well as the migration from UNIX to Linux

Page: 35 March 27, 2003

- The study also identified several supporting initiatives
 - Implement High-Availability Centralized Storage
 - Decreases system configuration, reconfiguration and administration requirements
 - Provides simpler, more flexible, failovers and flight-to-flight transitions
 - Storage for virtually all types of data; user products, Databases, COTS products, O/S images; short term telemetry data
 - Network Improvements
 - Continue transition of systems from "sunset" FDDI network technology to FastE/GigE
 - Banking of servers with no persistent data and dynamic load (to support growing user base):
 - As demand increases servers can be easily added to support additional load
 - Involves load sharing among multiple primes with common shared backup

CKHEED MA

Page: 36 March 27, 2003

- The study also identified several supporting initiatives
 - Firewall and Security improvements
 - Integrate Mission Admin System and Enhanced HOSC System (EHS) firewalls and implement load sharing design (nearly completed)
 - Consolidate secure access methods, replace with Virtual Private Network (VPN) technology (complete)
 - Eliminates two technologies and 4 COTS products

CKHEED MA

Conclusions

LOCKHEED MARTIN

Page: 38 March 27, 2003

- Remember
 - Start with the high value targets and make changes incrementally
 - Give commodity priced platforms more than a cursory look
 - Use rapid prototyping to prove concept
 - Take advantage of Moore's Law
 - Significantly reduces replacement and maintenance costs
 - Stay current by utilizing technology insertion
 - Reduce dependency on expensive, under-utilized COTS
 - Looks for ways to migrate while maintaining access to legacy systems
 - Don't try to do it all at once

KHEED M

Page: 39 March 27, 2003