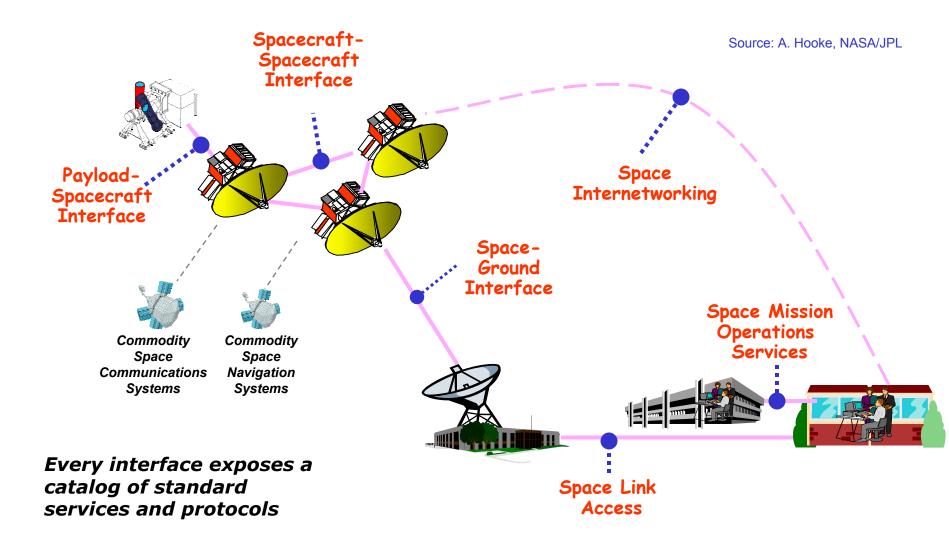
Layering IT Services for a Planetary "Exploration Web"

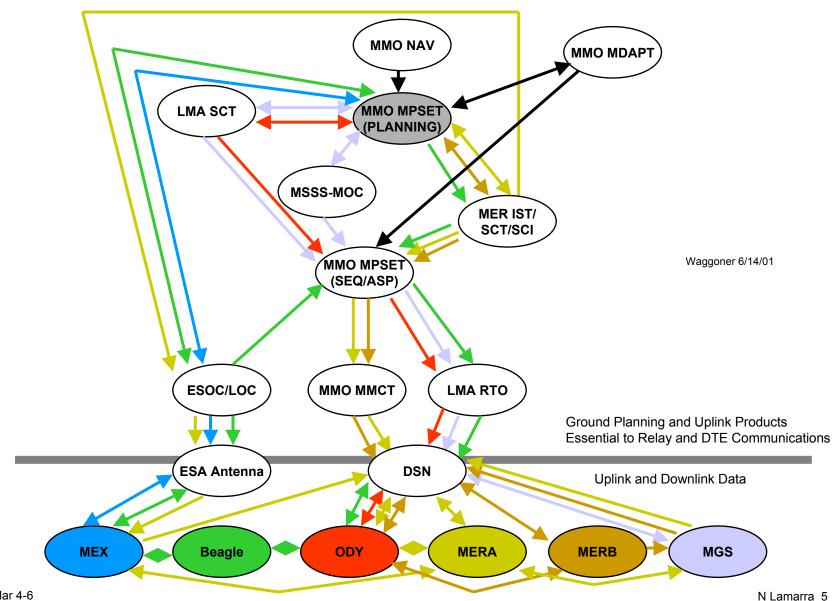
California Institute of Technology


Norm Lamarra GSAW 2003

Mar 4-6, 2003

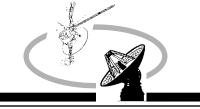
Overview

- Background & Problem Domain
 - Example Space Communications Scenarios
 - Problem Areas
- Proposed Middleware Approach
 - Shared Services
 - Layered Middleware View
- Potential Middleware Benefits
- IND Prototypes
- Future Steps


Space Communications Interoperability Points

Example: ASE Mission Scenario

Target Image with Onboard **Onboard Science Autonomous** Replanning Processing and Sciencecraft **Event Detection** New Science Execute plan to acquire new images Images Autonomous **S**ciencecraft Experiment (on TechSat21)


Example: Mission-Interaction Dataflow

GSAW 2003 Mar 4-6

Problem Areas

JPl

- Scientist-instrument connection
 - Large effort and cost of coordinating mission plans
 - Coordination among spacecraft
- Value of data
 - Much sensor data can't reach Earth (MGS d/l <1% data)
 - Which bits to d/l? Knowledge vs. Information vs. Data
 - Coordinated measurements

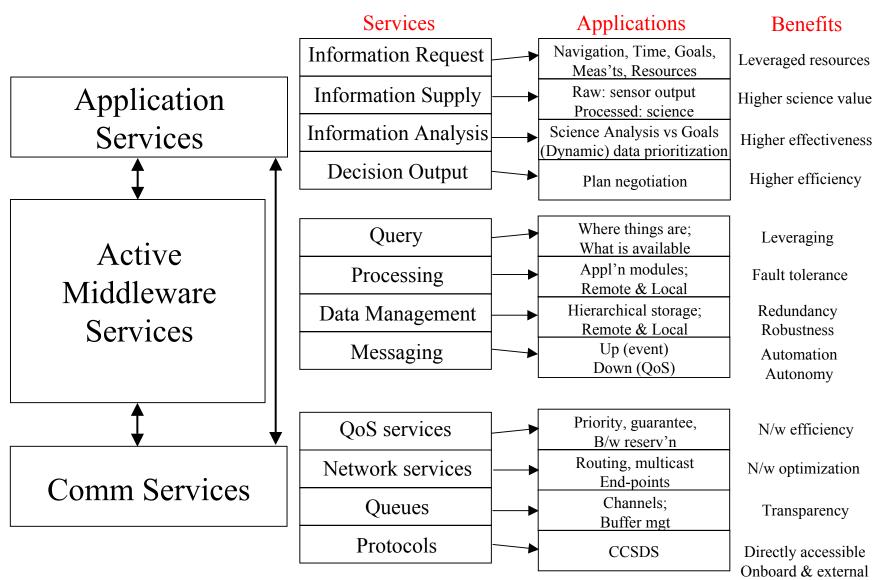
Operations cost

- Support for automation (e.g., data management)
- Support for autonomy
 - On-board reasoning (e.g., vehicle health, science goals, etc.)
- Application development
 - Few standard API's or accepted s/w architecture
 - Difficult to access distributed resources
 - Limited robustness (e.g., failure det'n/recovery, s/w modification)

Proposed Approach

JPl

- Conceptualize a set of standardized "shared services"
 - 3 broad categories: Communications, Storage, Processing
 - Distributed client-server model useful for all 3
 - Make object model highly flexible
 - Make clients as lightweight as possible
 - Simplify server replication (when necessary)
 - Build upon "enhanced" internet-style communication
 - Asynchronous messaging has many advantages
 - Publish/subscribe has further advantages
 - Message prioritization and efficiency are crucial
- Deploy "<u>layered infrastructure</u>" incrementally
 - Basic services: Messaging, time, events, security
 - Information services: data management, alarms
 - Higher-level services: navigation, weather, etc.
 - Agent interaction infrastructure (far future)
 - e.g., "autonomous" communication vs. "scheduled"


Shared IT Services

JPL

- Communications
 - Tolerate delay, disconnection, b/w limitation
 - Buffered, asynchronous, ...
 - Tolerate variety of network topologies (near/far)
 - Simplify data relay
 - Provide QoS (guarantees, reserved b/w, etc.)
 - Allow (dynamic) priorities (inc. time-to-live)
 - Allow choice of transport protocol
 - Support standards (e.g., CCSDS)
- Processing (on-board & distributed)
 - Simplify science processing
 - Support fault tolerance (service management)
 - Simplify off-board processing (like "solver service")
- Storage
 - Provide flexible storage type (e.g., image, meas't, stream)
 - Provide query capability
 - Support management functions (e.g., location, access)
 - Simplify transport (e.g., move, replicate)

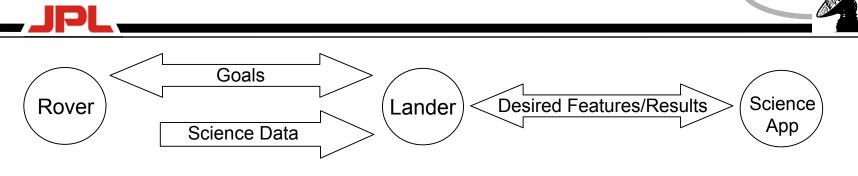
Layered Service View

Key concept: Shared Object Model

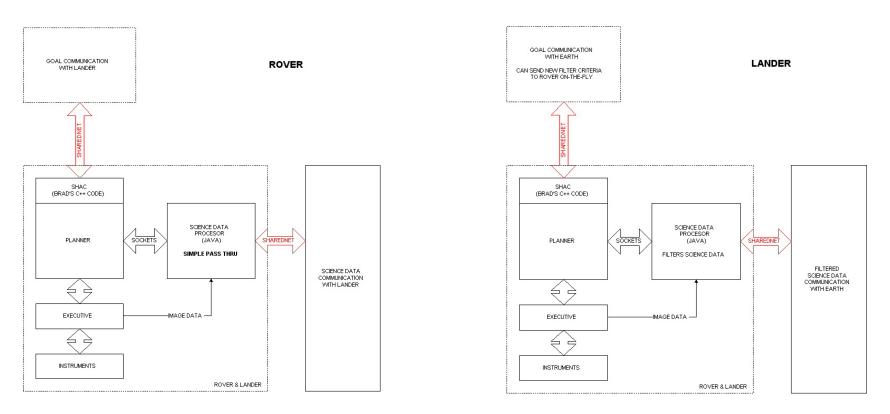
- Example of JPL's SharedNet (SN) Architecture
 - Information distribution with tight constraints
 - Efficiency, bandwidth, priority, QoS
 - Comm layer handles different transport media
 - V6 in field testing now
- Shared Object Model
 - Client works with local objects (vehicle, sensor, etc.)
 - Create, modify events distributed via publish/subscribe
 - Server maintains current value (or history) for distribution
 - Only attributes and object references are transferred (efficient)
- Higher-layer information processes easily constructed
 - Combinations of lower-layer events, values, locations, etc.
- Compare this middleware to "messaging protocols"...

Potential Middleware Benefits

JPl


- Simplified communications
 - Improve use of "local" network bandwidth
 - Higher aggregate capacity than typically "scheduled" for use
 - Lower latency, redundant, fault-tolerant, adaptive, etc.
 - Easily integrate sensor networks
 - Flexible message routing and filtering, sensor integration
 - Improve automation
 - Network "events" can trigger procedures
 - Automated reporting: sensors or health/status of spacecraft
- Simplified applications
 - Simplify use of distributed storage & processing
 - Data processed locally and shared efficiently
 - Software upload/installation (e.g., mods to Galileo s/w)
 - Assist failure discovery/recovery
 - Process restart or migration; application reconfiguration
 - Assist future autonomy
 - More information sources accessible for decisions
 - e.g., terrain, weather, off-board sensors
 - Simplify infrastructure for collaboration (joint planning, etc.)
 - Distributed intelligence; agents

Object Messaging Prototype (FY02)



Example Scenario Shows Remote Planning Coordination: "Ad-hoc" remote comms e.g., MER-A/MER-B/ODY Robust MOM: buffered, async, QoS,... Plan change by one affects others Extensible message object model Time criticality (view periods) "Subscription" by message type Negotiations reach a solution Simple client (Java API, C++ wrapper) Minimal use of link to Earth "GUI client" displays filtered traffic Can join "after the fact" GUI client" + "ODY" SN server This is <u>not</u> a Planner Demo!! "MER-A" coordination. data mgt, etc. prioritized d/l s/w u/l, etc. collaboration, etc. "MER-B"

Science Application Prototype (FY03)

Object Model is again key...

