
2003-03-28 © Copyright 2003 Texas A&M University 1

Extended Validation and Verification for
Situation-Aware Middleware Architectures

SangEun Kim1, Peter In2, Ramesh Bharadwaj3

[1] Dept. of Computer Science, Texas A&M University, College Station, TX 77840 USA, Tel: 1-979-845-5439, sangeunk@cs.tamu.edu
[2] Dept. of Computer Science, Texas A&M University, College Station, TX 77840 USA, Tel: 1-979-458-1547, hohin@cs.tamu.edu
[3] Center for High Assurance Computer Systems, Naval Research Laboratory, Washington DC 20375 USA, Tel: 1-202-767-7210, ramesh@itd.nrl.navy.mil

2003-03-28 © Copyright 2003 Texas A&M University 2

Today’s Agenda

Situation-Aware Middleware Architecture: Introduction
– Scenario
– Research Issues
– Project Goal and Overview

EVS: A Solution Approach
Summary

2003-03-28 © Copyright 2003 Texas A&M University 3

TSCE: A Scenario

WOCWOC

JFACCJFACC

GFCCGFCC

JFCJFC

TargetTarget
SystemsSystems

…………
…………

ObjectivesObjectives

ISR ISR
AssetsAssets

LogisticsLogistics
OpsOps

ISRISR

…………
…………

ObjectivesObjectives

ISR AssetsISR Assets

…………
…………

ObjectivesObjectives

ISR AssetsISR Assets

…………
…………

ObjectivesObjectives

ISR AssetsISR Assets

JMPS
Joint Mission Planning Systems

JFACC
(Joint Force Air Component Commander)

JFCJFC
(Joint Force Control)(Joint Force Control) Situation-Awareness

2003-03-28 © Copyright 2003 Texas A&M University 4

Research Issues
How to provide timely and transparent support in middleware
– for application adaptations that are triggered by different situations?
– for situation-aware, open-standard communication

How to generate an open middleware framework
– for generating new and/or reusing 3rd party components?
– for multiple QoS management mechanism that is tied with various

situations of a given mission?
How to provide efficient, secure services to application
developers
– especially in an multicast and wireless environment in a manner that is

survivable and efficient

2003-03-28 © Copyright 2003 Texas A&M University 5

Project Goals

Adaptive, Situation-Aware Middleware
(SAM) Architectures
– As the next generation of distributed real-time and

embedded (DRE) middleware
– Adaptable, Secure, Reliable architectures

(Collaboration with Dr. Stephen Yau, Arizona State University)

2003-03-28 © Copyright 2003 Texas A&M University 6

Dynamic Instrumentation
(Task 5)

Meta-Programming Context-
Processor and Secure Agent
Deployment

Platform-independent target
middleware model and
abstract semantic models

Customized core
components

Model, optimization,
feasibility feedback, and
tradeoff analysis results

SA-CSL Compiler
(Task 1)

New aspect and interceptor
components (e.g. situation-aspect

component, interceptor)

Target Middleware Configuration Specification using our
MCL

(Task 1)

MCL Compiler
(Task 1)

Aspect-Oriented SA-CSL Specification
(object-specific situation-awareness, real-time, and security) (Task 1)

Abstract semantic model Abstract semantic model

Target Middleware Model Generator
(Task 4)

Core component
model generator

Interceptor model
generator

Aspect component
model generator

Resource
|constraints

Target Middleware Integrator (Task 4)

TD/OEP/US Naval Research Lab: Core
middleware components (e.g. TAO ORB,
RCSM context processor, scheduler,
persistency service, etc.) optimized for specific
platform. Possibly available from other TDs
and OEPs.

TD/OEP/US Naval Research Lab: 3rd-party
QoS providers and agents. Possibly available
from other TDs and OEPs.

Core
components

Target
middleware

Target Middleware Component Generator (Task 4)

Reusable Component
Block

New Component Block

Aspect
component
generator

Interceptor
generator

Core component
customizer

Context-Processor
generator

Core
components

Aspect
components

Aspect
components

Validation and Verification
(Task 7)

Model checker, compliance
checker, and theorem prover

Resource Trade-off Analysis
(Task 6)

MQAR relationship
model

Tradeoff analysis
framework

Overview of Situation-Aware Middleware Architecture

Situation-Aware Middleware
Framework.

(Task 3)

Naval Research Lab’s
Secure Agents Middleware

(SAM)

Naval Research Lab’s
Secure Agents Middleware

(SAM)

2003-03-28 © Copyright 2003 Texas A&M University 7

Innovation of SAM

Situation-awareness.
Separation of aspects components and middleware core
components.
Automated component integration for combining crosscutting
aspects.
Meta-programmable dynamic instrumentation.
Trade-off analysis for application and target middleware model
optimization.
Validation and Verification Framework.
Security and survivability mechanisms utilizing software agents.

2003-03-28 © Copyright 2003 Texas A&M University 8

V&V: Focus of This Talk

Difficult to apply traditional V&V technique to situation-
awareness applications
– State explosion problem (huge number of state space)
– Redundant, unnecessary constraints related to dynamic

changing of situations
Lack of scalability
– BDD (Binary Decision Diagram)/OBDD (Ordered BDD)
– Common data types

• enumerations, integer, real types

2003-03-28 © Copyright 2003 Texas A&M University 9

Today’s Agenda

Situation-Aware Middleware Architecture: Introduction
EVS: A Solution Approach
– Overview
– Examples

Summary

2003-03-28 © Copyright 2003 Texas A&M University 10

EVS: A Solution Approach

EVS (Extended Validation &
Verification System)
– Combination of model checking

and theorem proving (salsa)
– Automatic property-driven

abstraction method

SS (Situation Specification)
• AM (Abstraction Mechanism)
• QoSmon (QoS monitor)
• TEVS (Translator for EVS)
• EVS (Extended Validation and Verification

System)
• RG (Report Generator)

2003-03-28 © Copyright 2003 Texas A&M University 11

Predator: An Example
Total Ship Computing Environment (TSCE)

Predator’s mission is to take
reconnaissance pictures and
send back the pictures to the
carrier.

Predator command and control
in the carrier.

2003-03-28 © Copyright 2003 Texas A&M University 12

Step 1. Situation Specification
Mission 1: Destroy an enemy target.
Resources:
missile, radar, fuel, etc.
Actions: launch missile(), guide missile()
QoS:

1) The missile should be launched within n seconds after the command is received from the carrier.
Situations:

Situation 2: If it receives a “destroy” command, the drone should launch missile.
Situation 3: After the missile is launched and before it hits the target, the radar system should guide the missile.

Mission 2: Reconnaissance
Resources:
radar, communication system, fuel, etc.
Actions: scan(), send-information()
QoS:

1) Each scan action has to be completed by m seconds.
2) The information sent back to the carrier should not be tampered.

Situations:
Situation 1: If the drone is in enemy territory, then every k seconds (k>m), the radar should perform a scan action

and a send-information action.

2003-03-28 © Copyright 2003 Texas A&M University 13

Situation Specification (Continued)

Situation-aware-object {
Situation1: Location is in enemy territory, every k seconds Situation1 is true;
Situation2: Drone receives “destroy” command, and missile has not been launched

yet;
Situation3: Missile has been launched and it has not hit the target yet.

[local] [Activate at Situation1] scan ()
RequireResources ResrScan
withQoSConstraint RTScan;

[outgoing] [Activate at Situation1] sendInfo ()
RequireResources ResrSendInfo;
withQoSConstraint SecureSendInfo;

[local] [Activate at Situation 2] launchMissile ()
RequireResources ResrlaunchMissile
WithQoSConstraint RTSLaunchMissile;

[outgoing] [Activate at Situation3] guideMissile ()
RequireResources ResrGuideMissile
WithQoSConstraint1 RTGuideMissile;
WithQoSConstraint2 … … another securityQoS

} DroneControl;
QoSExceptionHandler {

fail RTScan do action1;
fail SecureSendInfo do action2;
… …

}DroneExceptionHandler;

QoS-Security {
Entity goal;Action in;
Action out;Mechanism m1;
out.input=m1(in.result);

} Sec1;
QoS-RealTime {

Int Duration;
Int Importance;

} RTC1;
RTScan = new RTC1 (m, 0);
RTLaunchMissile = new RTC1 (n, 1);
RTGuideMissile = new RTC1 (null, 1);
SecureSendInfo = new Sec1 (Carrier, scan, sendInfo, PublicEncryption);
Resource {

Int Missile; Int Communication;
Int Radar; Int[] getResourceAvailable();

} DroneResource;
ResrScan = new DroneResource (0, 0, 1);
ResrSendInfo = new DroneResource (0, 1, 0);
ResrLaunchMissile = new DroneResource (1, 0, 0);
ResrGuideMissile = new DroneResource (1, 0, 1);

2003-03-28 © Copyright 2003 Texas A&M University 14

Step 2. Abstract Mechanism

AM1: Remove irrelevant information
– Based on analysis of relationship between variables

Missile

Radar

Control_system

Guide_missile

Scan

Send_info

Situation1

Situation2

Situation3

Mission1

Mission2

Launch_missile

Dependency graph

2003-03-28 © Copyright 2003 Texas A&M University 15

Abstract Mechanism (Continued)

AM2: Spatial Information
Reduction
– Based on spatial analysis

based on spatial
relationships

1. touching

2. overlapping

3. crossing

4. containing/
inside_of

5. covering/
covered_by

6. disjoint

7. equal

LBattleField = {zone1, zone2, zone3};
LEnemy = {zone1, zone2};
Loc = {LEnemy, LBattleField};
L1 Loc; L2 Loc;

scan (L1==LEnemy AND L2 == LBattleField);
scan (L1 == LEnemy);

2003-03-28 © Copyright 2003 Texas A&M University 16

Abstract Mechanism (Continued)

AM3: Temporal Information
Reduction
– Based on temporal analysis

based on temporal
relationship

A

B

1. A equal B A

B

2. A start B

A

B

3. A overlap B A

B

4. A end B

A

B

5. A meet B A

B

6. A after B/B before A

scan(); AFTER launchMissile();
launchMissile(); AFTER guideMissile();

scan(); AFTER guideMissile()

2003-03-28 © Copyright 2003 Texas A&M University 17

Step 3. EVS
Situation-aware Salsa
– Invariant checker for situation-aware specifications

<Process for applying Salsa>

2003-03-28 © Copyright 2003 Texas A&M University 18

Salsa: Specification
module TSCE_drone

type definitions
OnOff : {On, Off};

monitored variables
Missile, Radar, Control_System : OnOff;

controlled variables
TSCE_drone : OnOff;

internal variables
launchMissile, guideMissile, scan, sendInfo : bool;
Situation1, Situation2, Situation3 : bool;
Mission1, Mission2 : bool;

guarantees
/* true properties */
Property1 = @T(Radar = On) when (Situation1) => scan';
Property2 = (Missile = On and Radar = On) => guideMissile;
/* false properties */
Property3 = (Missile = On and launchMissile) => not scan;
Property4 = (Radar = On and guideMissile) => Missile = Off;

definitions
var launchMissile initially false :=

ev
[] @F(scan) -> false
[] @T(scan) when (Missile = On) -> true
[] @T(guideMissile) when (not scan) -> false
ve

var guideMissile initially false :=
ev

[] @F(scan) -> false
[] @T(scan) when (Missile = Off or Radar = Off) -> false
[] @T(scan) when (Missile = On and Radar = On and launchMissile) -

> true
ve

var scan initially false :=
ev

[] @T(Radar = On) when (Situation1) -> true
[] @T(Radar = On) when (not Situation1) -> false

ve
end module

2003-03-28 © Copyright 2003 Texas A&M University 19

Salsa: The Result
Analyzing SAL specification in file: tcse.sal.
Checking disjointness of all modules.
Checking module TSCE_drone
Number of Nontrivial Atoms: 0
Checking launchMissile ... disjoint.
Checking guideMissile ... disjoint.
Checking scan ... disjoint.
All checks passed.
Number of failed/passed verification conditions:

0/7
Time (total) : 0.226

Rewriting : 0.078
Partitioning : 0.000
Integer solving : 0.000
Bdd ops(total,gc) : 0.058, 0.000

BDD statistics.
Number of variables : 25
Number of nodes

User : 96
Total : 467

Table size : 65536

Checking guarantees in all modules.
Checking module TSCE_drone
Number of Nontrivial Atoms: 0
Checking Property1 ... pass
Checking Property2 ... fail
Checking Property3 ... fail
Checking Property4 ... fail

Checks failed for: Property4, Property3, Property2
Number of failed/passed verification conditions:

3/1
Time (total) : 0.315

Rewriting : 0.131
Partitioning : 0.000
Integer solving : 0.000
Bdd ops(total,gc) : 0.072, 0.000

BDD statistics.
Number of variables : 25
Number of nodes

User : 119
Total : 528

Table size : 65536

Checking coverage of all modules.
Checking module TSCE_drone
Number of Nontrivial Atoms: 0
All checks passed.
Number of failed/passed verification conditions:

0/0
Time (total) : 0.076

Rewriting : 0.013
Partitioning : 0.000
Integer solving : 0.000
Bdd ops(total,gc) : 0.000, 0.000

BDD statistics.
Number of variables : 25
Number of nodes

User : 1
Total : 2

Table size : 65536

2003-03-28 © Copyright 2003 Texas A&M University 20

Salsa: Extension to Situation-Aware
Extension for Temporal Relationship

definitions
…….

var TSCE_drone=
case Mission1

[] @T(launchMissile) BEFORE @T(guideMissile) ->
if []true -> true []false -> false fi

esac
case Mission2

[] @T(scan) -> if []true -> true []false -> false fi
esac

Extension for Spatial Relationship

definitions
…….

var TSCE_drone=
case Mission1

[] @T(launchMissile) CROSSING @T(enemy_area) ->
if []true -> true []false -> false fi

esac
case Mission2

[] @T(scan) -> if []true -> true []false -> false fi
esac

2003-03-28 © Copyright 2003 Texas A&M University 21

EVS: Extension to OBDD
BDD(Binary Decision Diagram) and OBDD(Ordered
BDD) for property1
– (Radar = On AND Situation1) => scan;

<BDD> <OBDD>

2003-03-28 © Copyright 2003 Texas A&M University 22

EVS: CTL Capability

Check a CTL formula,
– AG(scan -> AF guideMissile)

<Step1>
AG(scan -> AF guideMissile) ≡ ~EF(scan ^

~guideMissile)
<Step2>

S(scan) = {1}
S(~guideMissile) = {1,2,3}
S(EG ~guideMissile) = {1,2,3,5}

<Step3>
S(scan ^ EG ~guideMissile) = {1}
S(EF(scan ^ EG ~guideMissile)) = {1,2,3,4,5}

<Step4>
S(~EF(scan ^ EG ~guideMissile)) = Ø

1
~scan

~launchMissile
~guideMissile

~error

4
scan

launchMissile
guideMissile

~error

2
scan

~launchMissile
~guideMissile

~error

3
scan

launchMissile
~guideMissile

~error

5
error

scan()

done()

scan()
launchMissile()

launchMissile()
guideMissile()

done()

scan()
launchMissile()
guideMissile()

scan()
guideMissile()

launchMissile() guideMissile()

<Kripke Structure for TSCE_drone>

2003-03-28 © Copyright 2003 Texas A&M University 23

Summary

Extended V&V for Situation-Aware Middleware
Architectures
– Redundant, unnecessary constraints related to dynamic

changing of situations
• Represent by Situation Specification
• Reduce by Situation-aware Abstract Mechanisms (Spatial and

Temporal).
– Reduce the number of state space for V&V

• By salsa (combining model checking and theorem proving)

2003-03-28 © Copyright 2003 Texas A&M University 24

Contact Points

Dr. Peter In

Assistant Professor
Computer Science Department
Texas A&M University
College Station, Texas 77843-3112
Voice: +1-979-458-1547
Fax: +1-979-847-8578
Email: hohin@cs.tamu.edu
Web: http://www.cs.tamu.edu/faculty/hohin

Dr. Ramesh Bharadwaj

Center for High Assurance Computer
Systems
Naval Research Laboratory
Washington DC 20375 USA
Email: ramesh@itd.nrl.navy.mil
Phone: +1-202-767-7210
Fax: +1-202-404-7942

