
© 2003 by Carnegie Mellon University Version 1.0 page 1

The Importance of
Software Architecture

Linda Northrop
Director, Product Line Systems

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

This work is sponsored by the U.S. Department of Defense.

© 2003 by Carnegie Mellon University Version 1.0 page 2

Focus: Software Architecture
Software is pervasive in today’s systems and
business operations.

“The only thing you can do with an F-22
that does not require software is take a
picture of it” ~ Lt. Gen Fain

Software is the root cause of most of today’s
system problems.

The quality and longevity of a software
system is determined by its architecture.

© 2003 by Carnegie Mellon University Version 1.0 page 3

What Is Software Architecture?

Typically software architecture includes ad hoc box-and-
line drawing(s) of the system that is intended to solve the
problems articulated by the specification.
• Boxes define the elements or “parts” of the system.
• Lines define the interactions or the between parts.

A software architecture is a “first cut” at solving the
problem and designing the system.

© 2003 by Carnegie Mellon University Version 1.0 page 4

The Definition of Software
Architecture

“The software architecture of a program or computing
system is the structure or structures of the system,
which comprise software elements, the externally
visible properties of those elements, and the
relationships among them.”

Bass L.; Clements P.; Kazman R. Software Architecture in Practice
2nd Edition Reading, MA: Addison-Wesley, 2003.

© 2003 by Carnegie Mellon University Version 1.0 page 5

Implications of Our Definition - 1
Architecture is an abstraction of a system:
• Architecture defines the system elements and how they

interact.
• Architecture suppresses purely local information about

the elements; private details of the elements are not
architectural.

Defines the properties of components
• Properties of components are assumptions that one

component can make about another:
- provided services, required services, performance

characteristics, fault handling, resource usage

© 2003 by Carnegie Mellon University Version 1.0 page 6

Implications of Our Definition - 2
Every system has an architecture.
• Every system is composed of elements and there are

relationships among them.
• In the simplest case, a system is composed of a single

element, related only to itself.

Just having an architecture is different from having an
architecture that is known to everyone.
• If you don’t develop an architecture, you will get one

anyway – and you might not like what you get!

© 2003 by Carnegie Mellon University Version 1.0 page 7

Why is Software Architecture Important?

Represents earliest design decisions

• hardest to change
• most critical to get right
• communication vehicle among

stakeholders

First design artifact addressing
• performance
• reliability

• modifiability
• security

Key to systematic reuse • transferable, reusable abstraction

The right architecture paves the way for system success.

The wrong architecture usually spells some form of disaster.

© 2003 by Carnegie Mellon University Version 1.0 page 8

Functional Requirements
Functional requirements define
• what the system must do
• how components will interact, cooperate, and

synchronize correctly
• what it means to “function” properly

Functionality is largely orthogonal to the structure.
• how modifiable is a system that is functioning

properly?

Essential quality attributes are often overlooked or
omitted from functional specifications and system
descriptions.

© 2003 by Carnegie Mellon University Version 1.0 page 9

Software System Development

Functional
Software

Requirements

If function were all
that mattered, any
monolithic software
would do, ..but
other things
matter…

• Modifiability
• Interoperability
• Availability
• Security
• Predictability
• Portability

:

The important quality attributes and their characterizations are key.

has these qualities

Quality
Attribute
Drivers

Software
Architecture Software

analysis, design, development

© 2003 by Carnegie Mellon University Version 1.0 page 10

System Qualities and Software
Architecture

System
Specification

System Quality
Attributes*

Software
Architecture

drive

drives
* Performance

Security
Interoperability
Reliability
Availability
etc.

System Capabilities
and

Software Quality

S
Y
S
T
E
M

determines level of quality

© 2003 by Carnegie Mellon University Version 1.0 page 11

Challenges
What precisely do these quality attributes such as
modifiability, security, performance, and reliability mean?

Can a system be analyzed to determine these desired
qualities?

How soon can such an analysis occur?

How do you know if software architecture for a system is
suitable without having to build the system first?

How do you document an architecture?

Can you recover an architecture from an existing system?

© 2003 by Carnegie Mellon University Version 1.0 page 12

Common Impediments to
Achieving Architectural Success
Lack of adequate architectural talent and/or experience.
Insufficient time spent on architectural design and analysis.
Failure to identify the quality drivers and design for them.
Failure to properly document and communicate the
architecture.
Failure to evaluate the architecture beyond the mandatory
government review.
Failure to understand that standards are not a substitute for a
software architecture.
Failure to ensure that the architecture directs the
implementation.
Failure to evolve the architecture and maintain documentation
that is current.
Failure to understand that a software architecture does not
come free with COTS or with the C4ISR Framework.

© 2003 by Carnegie Mellon University Version 1.0 page 13

What Is Architecture-Based
Development?

Architecture-based development involves
• understanding the domain requirements
• developing or selecting the software architecture
• representing and communicating the architecture
• analyzing or evaluating the architecture for ability

to satisfy requirements
• organizing the work products

around the architecture
• implementing the system based on

the architecture
• ensuring that the implementation
conforms to the architecture

• maintaining the architecture

The architecture must be both
prescriptive and descriptive.

© 2003 by Carnegie Mellon University Version 1.0 page 14

Needs, Practices, and Requirements
Early risk
mitigation in
system life cycle

Architectural
insights into
legacy systems

Early risk
mitigation in
system
modernization and
evolution

Identification and
characterization of quality
drivers

Improved architecture
definition

Qualitative architecture
evaluation

Improved architecture
documentation

Improved skills
and knowledge
base in software
architecture
practices

Improved
acquisition
practices that
capitalize on an
architecture-
centric approachArchitectural views of

legacy systems

Higher quality systems
that are built predictably

© 2003 by Carnegie Mellon University Version 1.0 page 15

SEI Enablers
Early risk
mitigation in
system life cycle

Architectural
insights into
legacy systems

Early risk
mitigation in
system
modernization and
evolution

Identification and
characterization of quality
drivers QAW

Improved architecture
definition ADD

Qualitative architecture
evaluation ATAMSM

Improved architecture
documentation

Documentation Guidelines

Improved skills
and knowledge
base in software
architecture
practices

Books and
courses

Improved
acquisition
practices that
capitalize on an
architecture-
centric approach

Guidelines and
courses

Architectural views of
legacy systems

Architecture Reconstruction

Higher quality systems
that are built predictably

© 2003 by Carnegie Mellon University Version 1.0 page 16

SEI Architecture Technology
Summary
Courses and Books

Quality Attribute Workshop (QAW)

Attribute-Driven Design (ADD)

Architecture Documentation Guidelines

Architecture Tradeoff Analysis MethodSM (ATAMSM)

Architecture Reconstruction (Dali)

Acquisition Guidelines

© 2003 by Carnegie Mellon University Version 1.0 page 17

Contact Information
Linda Northrop
Director
Product Line Systems Program
Telephone: 412-268-7638
Email: lmn@sei.cmu.edu

U.S. mail:
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

World Wide Web:
http://www.sei.cmu.edu/ata
http://www.sei.cmu.edu/plp

SEI Fax: 412-268-5758

