
Richard N. Taylor
Institute for Software Research
University of California, Irvine

taylor@uci.edu
www.ics.uci.edu/~taylor

“don’t settle for fluff”

Architecture Technology That’s
Worth Your Investment

Architecture-Based
Software Engineering

a Domain engineering and requirements definition may
precede

a OOD may supplement; coding follows
a But the architecture remains the primary focus for all

system evolution. It is technical. It is critical.

“An approach to software systems development
and evolution which uses as its primary
abstraction a model of the system’s
components, connectors, and interconnection
topology”

So What’s Different?

aThe degree to which architectures are made
explicit, and how they are described

aUsing the description as the basis for
implementation & evolution (static and dynamic)
`it is not a throw-away model

aThe degree to which communication is
separated from computation

aThe prominence given to connectors

“Free Investment Advice”

aIf your architectural model can’t support
you through implementation and system
evolution, it is not worth your investment.
aIf you are only using your architectural

model for “communication”, you are at
best playing at engineering, and may be
lying to yourself, your management, and
your customers.

References

aUC Irvine’s architecture technologies
`ArchStudio (engineering environment)

http://www.isr.uci.edu/projects/archstudio/
`xADL (extensible XML-based ADL)

http://www.isr.uci.edu/projects/xarchuci/

What’s Needed to Support It?

aAppropriate descriptive formalisms
`Architecture description languages (ADLs)

aTools
`to carry out analyses, support editing, generate code,

support run-time dynamism, etc.
aProcesses
`to create or recover architectures
`to integrate architecture-based development into the

broader development and organizational contexts

Architecture-Based Dynamism
aComponent and connector addition, removal,

replacement, and reconnection
aRequires consistency maintenance
`some guaranteed by a priori analysis
`on-the-fly constraint enforcement
`faithful architectural model
`mapping changes to the implementation

aRequires minimal disruption
`state preservation, replication, migration
`near-continuous service availability
`reverting to reliable configurations

Key Facilitator: Connectors
aTraditionally used in system modeling

`explicit in design, indiscrete in implementation

aProvide a critical abstraction for dynamism
`should remain discrete, flexible entities in the implementation
`mediate communication between components
`specify communication mechanism independent of component

behavior
`encapsulate change application policy
`boundaries for confining change scope

aCommunication using asynchronous messages
`reduces component communication dependencies
`how stateful is an event?

Architecture-Based
Engineering Environment

aFunctional areas:
`Architecture development and analysis
`From model to implementation
`Evolution: static and dynamic

⌧Rationale capture
`Multi-model support

Multi-model Support: xADL

aXML-based representation of ADLs
`run-time and design-time elements of a system;
`support for architectural types;
`configuration management concepts such as

versions, options, and variants;
`product family architectures;
`architecture "diff"ing

Summary

aArchitecture-based software engineering
addresses the core issue of system design
`takes some old and mainstream ideas and

makes them better
⌧design notations, domain knowledge rep.

`leverages event-based interaction paradigm
`leverages results in middleware
`provides a viable basis for software reuse?
`provides a viable basis for dynamic

adaptation

