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Complex Data EXplorer
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A Common Need

Model generates 1M potential mission trajectorles w/ dozens of fltness metrics
Do the trajectories fall into families with similar behaviors?
* How many such families are there?
~* What are the uniquely identifying characteristics of each family?
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eie . New OCO-2 data release. 10M soundings.'Validation team 'needs to sign off.

* Does this version of the retrieval code match past behaviors?

i e e+ |f not, where & when do they differ?
‘ ~+ What key atmospheric conditions correlate with the mismatch?
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A Common \Need
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Hardware fault just occurred onboard! Need to find root cause ASAP.
* Does the pre-fault telemetry show any differences vs. the past?
- » |f so, what are the key telemetry channels or science products to examine?
 What times in the past looked similar to the pre-fault state?
* Rapid hypothesis forming, testing, falsification

I
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A Common Need
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» S Signal lock to an active mission was just lost unexpectedly... again

Network/ DSN’ * How unusual is this event given thg pas.,t rryssmn exp.erlence?
%Performance  What were the most unusual readings in signal metrics before loss?
\d" * Are there trends in losing lock? What do they depend on?
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A Common Need

New science data JUSt arr|ved is it high pr|or|ty?
 Compare to past findings... how unusual is it?
 Compare to targets of interest... is it similar?

- * Do the expected correlations and relationships hold?
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A Common Need

" Regular, prolific telemetry arrives daily

~+ * Any likely problematic values?
{ N
=+ Are co-varying trends as expected? 2 Downlmk”Lead, /
. If oddltles appear, which.channels and tlmes? M
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A Common ‘Need
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-._',_Z ---Interesting phenomenon found! But.data is too big...
* Find more events like this... where, when?
 What's simplest “recipe” to find these events?

e Select them out of the data for later analysis
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A Common ‘Need
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“Take a look at my data and see what you think.”

* Any troublesome issues? High correlation? Sparsity? T —
e Perform quick modeling and make trial products i
* Try out many technologies to find good matches Data Science™=

Sanity check expected behavior & provide feedback



A Common Need

| * High Dimensional time-series.data

&+ |dentify strange, outlier, or invalid values
=+ Interactively explore data

&  Build/falsify-hypotheses

* |Interrogate relationships between cols

* Find more events like this -

- * Provide simple recipe to recognize events /&

"+ Create predictive, explanatory models

&7 * How many families of data are present?

Machine Learning was made for this!
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Current State of the Art

(B tesomcestay x . am - ¢ Python, Matlab, R scripts... lots of them

se Lr'.assertEciua'l{iakt. encode(), L }

po © . * Q@Great for routine'processing / checking known issues

def test_decode_default_packet(self):
pkt = packet.Packet(encoded_packet='2"})

self.assertEqual(pkt.encode(), '2|') O Ve ry inEffiCient for exploration

v Debug Test | # Run Test

. Did you search for all potential problems?

pkt = packet.Packet(packet_type=packet.EVENT,

@ &S

L-'] data=[six.text_type('foo')]) . . .
self.assertEqual(pkt.packet_type, packet.EVENT) - ® D I d yo u Ve rlfy a I I a SS u m pt I O n S ?
self.assertEqual(pkt.data, ['foo'l) =
self.assertEqual{pkt.encode(), '2["foo"]') , A A A ?
_ . e Did you thoroughly visualize your entire data-
v Run Test |  Debug Test
def test_decode_text_event_packet(self):
pkt = packet.Packet(encoded_packet="2["foo"]"')
P o eo n s én;é u:;—lﬂnuu" b+ “‘ﬁlll-:;z‘a;“c‘d ‘r\z'n.';b--lv I.'U?l:‘ U-I-F'a I-F 0

¥ Editor - X:\Coding\MATLAB\Matlabl

Custom Code for Data Exploration

Dr. Lukas Mandrake, Jack Lightholder OWrite O Debug = Graph BLearn



New Concept

 Don’t fuss over buggy code
P * |Interactively graph and explore
o s e * Beautiful interface to many ML approaches
® X ent o | ~* Tools to address the Common Need

"acket (pac!

LB B test_packet.py - python-socketio
lj\l 2 test_packet.py X

self.assertEqual(pkt.encode(), T2'}

B
=]

= e o) .
o - * Writes the code for,you afterwards!
13 o B
: B I
% BN
5 :ct =200 ) === " . ' Ll I L1
 Pmester O ©0ABO4 al{{jﬁ?fﬁ% e @ s
B coo ot s ' — Custom Code for Data Exploration

Dr. Lukas Mandrake, Jack Lightholder Blearn Blearn W Graph Blearn
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Guiding Principles

e Easy, interactive graphing
- scatter, heatmap, histogram, line,'bar
- linked:"data here can be found everywhere else -

P = Gogis= Agodtes s Bao = Dewkopment = Zom [t - S GAdSm = Windows

e Continuous, visual guidance
- No question without rich support,to guide answer
- No obscure numbers; permit visual selection & previews ——

* Fast interactivity S
- Humans learn best by manipulating and studying: playing =
- Slow batch analyses lose context & attention... =

11111

TTTTT

* Never stop working
- Long analyses run in background =

- Always foreworn of time & memory needs for all choices - '
Dr. Lukas Mandrake, Jack Lightholder 3




Initial Data Scan

* Easy: NaN’s and Inf’s
 Moderate: Sigma-outliers
Repeated values

* Which rows/columns —
affected? e

* Just some bad rows to a
filter? Bad-columns? ey

* “Sweep” thresholds to
observe effects

Dr. Lukas Mandrake, Jack Lightholder 4



Interactive, Linked Graphs

 Make discoveries just by selecting s« oot - Aot -~ Reoorts «  Deveopment < 20
data in a graph i

Features 2ealz3 & 0 5i02vs.TIO2
Filg
Target

 “l wonder what this group of data shothunber

Distance(m)
)
meanS? LasarPower
SpectrumTotal
5102
Tioz

« Rapidly prove / falsify hypotheses A1203

FedT

Mgl
Cal

* Simple concept/ “Wow!” factor to

researchers o
Si02 BRMSEP
Ti02 RAMSEP
* Perfect example of discovery Saved Selections /1

B Selection

through play

* Will be extended to all graph types

Dr. Lukas Mandrake, Jack Lightholder



A

How Many Kinds? (Clustering)

i |
. : I A |
- Pl = Graphiy = .ﬁ.h:rﬂl:rrl.rli'r Eoporti = Dervploprmnt = hlm‘h Grid S - Windomsn =
e Can’t plot everythingvs. & s pE—
everything else... =l
 Automatic search for B o
B Feot
Interesting groups i

* Perfect example of visual el
guidance

e Focus-of-attention tool

SO we THOZ W AIROZw FeOT W

Dr. Lukas Mandrake, Jack Lightholder 6



Find More Like This (Interactive Classification)

]
N \
. |

|
(notional, not yet implemented)

e Starts.with examples of desired events ')

e Brush them in time: positive label

1]

* Brush undesired regions: negative label (national, nat yet implemented)

E 8 ¢ & Ilirgiacynicemts el .Umr

e Classify remainder of time as (un)desired
* Interactively modify “mistakes” to refine

* Finish with potential events & trained model

Dr. Lukas Mandrake, Jack Lightholder



Explain This (Feature Selection / Endmembers)

:
e Starts with subsets of interest I '

- clustering or user-selected

* What columns best explain what’s =
special about one group vs another? &=
e |f all data in this subset were made » ======s
up of a linear mixture of N samples,
which N best explain the data?

* For each sample, what mixture of
these endmembers is required?

Dr. Lukas Mandrake, Jack Lightholder



Predict This (Regression)

i : (notional,'not yet implemented)

* Predict one column'using others

e Simple: multivariate curve fitting

 Complex: Model-free ML regression N

1 |

 Which columns proved most useful? (notidnal, not yet implemented)

* What % variance explained for each?

Dr. Lukas Mandrake, Jack Lightholder



Remove Correlations (Dim Reduction)

)
| o

B CCAM_THIRTY‘_K_POINTS‘CSV
* Never need all the columns L

: Dimensionality Reduction
All Columns (23/23) -

EEEEEEEEEEE Explain Variance with Fewer Features

* Because Physics exists, there are 8 e T e
8 =0 g w0

relationships between Sl
* Find smaller set of new columns
* Can reveal essential relationships

] MgO_RMSEP
[C] caO_RMSEP

between original columns REtves

* Graphs even hard-to-visualize datasets

Dr. Lukas Mandrake, Jack Lightholder



Find Strange Things (Anomaly Finding)

iy

|”

e Starts with “normal” times

* Detect likelihood of
normalcy elsewhere

e Least normal regions are
anomalies

 Focus of attention for further
Investigation

Dr. Lukas Mandrake, Jack Lightholder

\ Features

| Al Columns (23/23)

EEEEEEEEEEE

[] File

[] Target

[] ShotNumber
[C] Distance(m)
[C] LaserPower
[C] SpectrumTotal
Sin2

[] Tio2

[] AI203

[] FeOT

[] Mgo

[J cao

[] Na20

\ Selections

11



Don’t just explore: Get a Codmg Head StartI

* Everything user does is generating Python codeI

* Can just “export” code to a file at the end

e User just picks up in Python and continues deeper analysis
. Unprecedented support & tlme savmgs

def add5(x): E
return X+ i

def dotwrite(ast):
nodename = getNodename()
label=symbol.sym_name.get{int{ast["]),ast[C])

print % (nodename, label),
if isinstance(ast[!], str):
if ast[.].strip():
print i oast[!]
else:
print
else:
print
children = []
for n, child in enumerate{ast[ :]):
children. appind{dntwritit:hild}}
print % nodename,
for name in children:

Dr. Lukas Mandrake, Jack Lightholder e B AZOIvreT @ )



CODEX: Know Thy Data

Fast diécovery of data issues & problems
Fast intuition building

Powerful ML techniques madevisual
Guidance for every step of exploration
Doesn’t replace Python or Matlab

Does start you off ready to do great work

4 I
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Follow our, progress on GltHub
https //glthub com/NASA AMMOS/CODEX
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