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OCIO | Office of the Chief Information Officer

The Chief Technology and Innovation Office Today

Purpose

* Envision and evaluate the future IT technologies
needed by OCIO, JPL and NASA

* Detect and infuse innovation and technology into
projects/missions, business, science and engineering

e Engage promising industry partners for OCIO and JPL’s
benefit

* Infuse future talent into OCIO and JPL

e Train JPLers in new IT technologies and ways of working
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How do we find answers?
How do we detect new questions?




We apply the key emerging technologies to help
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Foundry A-Team and Proposals Tools

jp! innovation foundry

@A-Team

Natural Language Processing (NLP) for Information Retrieval

JPL  PLSpace | JPL | Catech | NASA

A-Team Tool | Search

SearchTool  CrawlTool  SME Discovery

Select sources to search:

s, Awards, Posters, DRDF) @

, Awards,
imb Sounder (MLS) Publications ®

1880 1985 2000 2005 2010

Savedltems  Getting Started  Datalnfo

Search databases for relevant information.
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Analytics and machine

learning aids early mission

technology concept

research and formulation.
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Foundry A-Team and Proposals Tools

‘one major advantage ... is to
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Foundry A-Team and Proposals Tools

jpl innovation foundry

Foundry Proposal Office

Natural Language Processing (NLP) for Information Retrieval

Topic Model

Home  Applications

The below visualization, LDAVis, Is an interactive visualization of the topics estimated using Latent Dirichlet Allocation. An LDA model has been fit to each type of debrief per solicitation
Use the selector buttons below to choose a solicitation and debrief type

Solicitation Debrief Type

Earth Venture Mission - 2/ NNH15ZDA0110 - EVM-2 v Major Weakness

The right hand side visualization shows a break down of the terms that comprise the topic.
The blue bars show the corpus wide frequency of the term, and the red bar indicates the
topic specific frequency of the term. Hover over a topic in the Ieft hand visualization, or
select the topic from the drop down menu, to see the terms in the topic

The left visualization shows a global view of the topics, plotted in a 2 dimensional space
that represents the variance between the topics. Topics that are close to each other in the
space are more similar to each other. The area of the Gircle is proportional to the
prevalence of ine topic in the corpus.

YYou can use the slider to adjust the value of lambda, a weighting parameter used fo calculate relevance of a term. Relevance of a term is a combination of term importance within a
specific topic and across all topics. A lambda value of 1 highiights the term’s importance within the topic alone, whereas a lambda value of 0 would highlight the term’s importance
compared to other topics. Typically a lambda value of 0.6 is recommended to better understand the topic composition

lear Topic

Selected Topic: 3 Previous Topic | | Next Topic || Cl

Intertopic Distance Map (via multidimensional scaling)

PC2

Marginaltopic distribution
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Analytics and machine
learning uncovers patterns
in debriefs which can be
used to improve future proposals.
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jpl innovation foundry

Foundry Proposal Office

Foundry A-Team and Proposals Tools
Natural Language Processing (NLP) for Information Retrieval

Home  Applicati

pic Model

The below visualization, LDAVis, Is an interactive visualization of the topics estimated using Latent Dirichlet Allocation. An LDA model has been fit to each type of debrief per solicitation
Use the selector buttons below to choose a solicitation and debrief type

Solicitation Debrief Type

Earth Venture Mission - 2/ NNH15ZDA0110 - EVM-2 v Major Weakness

Analytics and machine
learning uncovers patterns
in debriefs which can be

The right hand side visualization shows a break down of the terms that comprise the topic.
The blue bars show the corpus wide frequency of the term, and the red bar indicates the
topic specific frequency of the term. Hover over a topic in the Ieft hand visualization, or
select the topic from the drop down menu, to see the terms in the topic

The left visualization shows a global view of the topics, plotted in a 2 dimensional space
that represents the variance between the topics. Topics that are close to each other in the
space are more similar to each other. The area of the Gircle is proportional to the
prevalence of ine topic in the corpus.

YYou can use the slider to adjust the value of lambda, a weighting parameter used fo calculate relevance of a term. Relevance of a term is a combination of term importance within a
specific topic and across all topics. A lambda value of 1 highiights the term’s importance within the topic alone, whereas a lambda value of 0 would highlight the term’s importance
compared to other topics. Typically a lambda value of 0.6 is recommended to better understand the topic composition
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used to improve future proposals.

The A-Team and Proposal
Debrief Tool reduce concept
and proposal research
effort while introducing new
research capabilities.
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D(Digital Transformation

Business Event Transaction Registry (BETR)

An Institutional Framework for Monitoring Lifecycles

BETR is a tool that provides the ability to examine
engineering footprint in a common way.
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D(Digital Transformation

Business Event Transaction Registry (BETR)

An Institutional Framework for Monitoring Lifecycles

BETR is a tool that provides the ability to examine
engineering footprint in a common way.

We can now start to examine processes across several areas of JPL seamlessly,
and use analytics and visualization for monitoring and improvement.
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DEEP SPACE NETWORK

Optimization of DSN Scheduling

Decrease Human-in-the-Loop Time for Mission Scheduling

Missions make requests to the DSN months (sometimes years)
in advance to ensure coverage for science and operations.

5-MAR-20 GSAW2020 SPRPL 24



DEEP SPACE NETWORK

Optimization of DSN Scheduling

Decrease Human-in-the-Loop Time for Mission Scheduling

Missions make requests to the DSN months (sometimes years)
in advance to ensure coverage for science and operations.

Scheduling is always difficult due to overlapping requirements.
Our current tools work — but require manual labor.
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DEEP SPACE NETWORK
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DEEP SPACE NETWORK
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Visualized output from use of reinforcement learning (RL)
and multi-integer linear programming (MILP) approach.
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€5 MAARS Rover Image Captioning

Increasing Science Throughput with On-Board Deep Learning

High Performance Spaceflight Computer (HPSC) will
power the next generation of surface vehicles.

5-MAR-20 GSAW2020
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MAARS Rover Image Captioning

Increasmg Science Throughput with On-Board Deep Learning

High Performance Spaceflight Computer (HPSC) will
power the next generation of surface vehicles.

Instead of 200 images per day for scientific analysis and
target selection — what about 1 million captions?
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€& MAARS Rover Image Captioning

Increasing Science Throughput with On-Board Deep Learning

rover arm over fractured
sedimentary bedrock and crossbedded layers and veins ~ With sand nodular textures alteration halo

sedimentary bedrock overlying
light toned bedrock and regolith

sedimentary bedrock with planar crossbedded bedrock outcrops  bedrock outcrop with veins and sedimentary bedrock with

4 e e ' T S “ 22 S x
close view of a conglomerate rock selfie of the rover on regolith and  the view of an outcrop dark sand dune field in front of coarsely layered sandstoneand  bedrock with many veins
bedrock surrounded by sand dunes layered strata . sand surrounded by sand and regolith
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Telemanom Time Series Anomaly Detection
Application to Spacecraft and Mission Operations

Monitoring thousands of telemetry channels for changes
in behavior is prohibitively difficult and time-consuming.

5-MAR-20 GSAW2020 SPRPL 33


https://www.kdd.org/kdd2018/accepted-papers/view/detecting-spacecraft-anomalies-using-lstms-and-nonparametric-dynamic-thresh

Telemanom Time Series Anomaly Detection
Application to Spacecraft and Mission Operations

Monitoring thousands of telemetry channels for changes
in behavior is prohibitively difficult and time-consuming.

A modeling and software architecture for any time-series
data — today’s focus on enhancing mission operations.

5-MAR-20 GSAW?2020
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Telemanom Time Series Anomaly Detection
Application to Spacecraft and Mission Operations

y / yv_hat comparison

0.5 l “

4000 4500

A detection of contextual anomaly using Telemanom on
Mars Science Laboratory thermal channels.
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DEEP SPACE NETWORK &

Alarm (Anomaly) Management
Characterization and Prioritization of Detected Anomalies

In a critical scenario, hundreds of alarms could be
active at any moment across multiple telemetry channels.
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DEEP SPACE NETWORK &

Alarm (Anomaly) Management
Characterization and Prioritization of Detected Anomalies

In a critical scenario, hundreds of alarms could be
active at any moment across multiple telemetry channels.

Alarm management is developing methodologies in alarm
prioritization, fault detection, and state estimation — extensions
being researched that complement previous and current work.

5-MAR-20 GSAW2020 SPRPL 38



DEEP SPACE NETWORK &

Alarm (Anomaly) Management
Characterization and Prioritization of Detected Anomalies

(>]
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DEEP SPACE NETWORK &

Alarm (Anomaly) Management
Characterization and Prioritization of Detected Anomalies

Estimated states

Model Errors
(anomalies)
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DEEP SPACE NETWORK &
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DEEP SPACE NETWORK &

Alarm (Anomaly) Management

Characterization and Prioritization of Detected Anomalies
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