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Lumos Summary

Solution: Lumos consolidates information from the multiple systems 
to improve data quality assessment through a multi-state bias 
estimation process

Need: 1 SOPS requires the ability to provide consistent, accurate, and 
timely Space Domain Awareness (SDA) observation data

Anomaly Detector
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Solution: Lumos Collection Recommender employs reinforcement 
learning to optimize strategies for sensor tasking

Need: 1 SOPS requires the ability to plan coordinated collections 
across space surveillance sensors to arm decision makers with the 
high-quality SDA information

Collection Recommender
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Current prediction of the 
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Collection Recommender Problem Statement

• The goal of Lumos Collection Recommender is to determine Sensor 
Configurations, 𝐴 𝑡 , that:

• Minimizes the amount of Effort, a metric that is a function of number of 
sensors required, number of observations from each system, and 
time/duration the systems are operating

• Minimizes user defined measurement of RSO covariance at a desired 
time, 𝑇, subject to inequality constraints provided by the user

• When given the Initial Covariance, 𝜒 𝑡0 , we will find the optimal sensor 
configuration that maximizes our underlying objective function based on 
Information Gain:

𝐴∗ 𝑡𝑓 ≈ argmax
𝐴 𝑡

𝐽 𝜒 𝑡 , 𝐴 𝑡 , 𝑇

• Such that:
𝑔 𝜒 𝑇 ≤ 𝑅𝑇

• where 𝑔 𝜒 𝑡 is a measurement of the covariance at time 𝑡

• Objective function is non-convex!

• Computation of Information Gain is shown in the diagram to the right
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Current Covariance of 
the RSO if no 

observation were 
taken at time 𝑡, 

denoted as 𝜒 𝑡−

Covariance of the 
RSO if an observation 
were taken at time t , 

denoted as χ t

ΔI 𝜒 𝑡0 , 𝐴 𝑡 = 𝑔 𝜒 𝑡− − 𝑔 𝜒 𝑡
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Information Environment Agent

Collection Recommender Software Architecture

Scenario Setup

Generate Accesses
• Physics engine to 

determine valid 
collection times for 
each sensor

Initialize Markov Decision Process:
• Builds the State-Action table for 

the agent to explore during 
training and solve during 
operations

• Creates the reward function 
based on reward inputs

State-Action Table

Reward Function:
• For the current state, action, and 

resultant state compute the reward

Render:
Show the current state of the 
environment for diagnostics

Sensor 
Characteristics 

St , At , St+1 Rt

St , At St+1

At

Ot+1 , Rt

Start Time, End Time, Initial RSO 
State/Covariance, Sensor Ephemerides, 
Covariance Thresholds, Time of Interest

Valid Sensor-RSO 
Accesses

Optimal set of 
Collections
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Step:
For the current state, St, and given 

action, At, compute the resultant state, 
St+1

• If using a Reinforcement 
Algorithm, will 
incrementally step  
through the environment 
using a learned 
representation of an 
optimal policy or value 
function

• If an optimization 
algorithm such as MCMC 
or Genetic Algorithm, it will 
iteratively try a set of 
actions in order to 
determine the optimal set 
of actions

Unscented Kalman Filter:
• Compute the resultant state, St+1, 

given the action, At

• For near-simultaneous collects, 
information fusion is used to 

estimate resulting covariance from 
multiple simultaneous covariance  
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Collection Recommender Optimization Results
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RL

GA

MCMC

Collection Recommender Optimization Results: RL
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RL

GA

MCMC

Collection Recommender Optimization Results: GA
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RL

GA

MCMC

Collection Recommender Optimization Results: MCMC
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Agent Strengths vs. Weaknesses
Reinforcement Learning Genetic Algorithm Parallel-MCMC

Strengths

• Fast! Only needs to run through 
the environment one time. Offers a 
responsive solution towards a 
real-time solution

• Offers the ability to 
present an operator with 
a diverse set of solutions

• If sufficient iterations are 
executed, will converge to 
a global maxima

• Fewest hyperparameters

Weaknesses

• Large number of  hyperparameters 
to tune, and more complex to train 
a solution that generalizes

• Potential to converge to a 
local maximum

• Large number of 
hyperparameters to try to 
tune results and avoid 
local maximum

• Iterative process—Runs 
through the environment 
multiple times to evaluate 
each generation

• Realization of 
optimization is 
dependent on collects 
resulting in successful 
tracks

• Incrementally steps
through the environment, 
and at each step 
iteratively explores a part 
of the environment based 
on Horizon Depth

• Runtime grows 
significantly as number of 
potential collects 
increases

• Realization of 
optimization is 
dependent on collects 
resulting in successful 
tracks
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• Each satellite/sensor constellation in the 1 SOPS constellation was built 
independently 

• Observations are used to maintain accurate orbital knowledge of a large 
catalog of RSOs for their end-users, not to cross-validate measurements 
from other sensors

• When a single sensor is used to estimate an RSO state, resultant estimated 
state may be biased due to sensor errors

• Analysts today manually detect when a sensor may be generating biased 
observation data

• Comparing observations of RSOs from multiple sensors can detect anomalous 
observations due to:

• Sensor errors such as:

• Sensor timing bias errors

• Out-of-date data used to compute sensor ephemerides

• Unmodeled orbit maneuvers of RSOs

Lumos Anomaly Detector
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• Lumos’s Anomaly Detector fuses observations of well-known / well-behaved 
RSOs from various space-based EO SDA constellations to monitor for sensor 
anomalies

• Uses a multi-state Unscented Schmidt Kalman Filter to estimate:

• Sensor timing bias

• State(s) of RSO(s): 𝑋𝑟𝑠𝑜
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Anomaly Detector Walkthrough
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Anomaly Detector Walkthrough
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2 Biased -
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Anomaly Detector Walkthrough
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Anomaly Detector Walkthrough
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RSO 1 Diagnostic Plots
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Anomaly Detector Walkthrough
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RSO 1 Diagnostic Plots
Post-
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Anomaly Detector Walkthrough
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Sensor A Diagnostic Plot Sensor B Diagnostic Plot
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Anomaly Detector Walkthrough
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Sensor A Diagnostic Plot Sensor B Diagnostic Plot
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Anomaly Detector Walkthrough
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Anomaly Detector Walkthrough
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RSO Sensor A Sensor B

1 Ignored Nominal

2 Ignored -
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RSO-Sensor Pairs



M A K E  A  L A S T I N G  I M P A C TS T R A T A G E M G R O U P . C O M

Anomaly Detector Walkthrough
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Anomaly Detector Walkthrough
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Lumos Anomaly Detector Summary

• Lumos will provide 1 SOPS operators automated processes enabled by advanced techniques to:

• Schedule co-collections of RSOs of interest to maintain accurate orbit knowledge

• Monitor sensors for anomalous data to ensure the accuracy of their computed orbital states

• These capabilities are currently manual processes and will free up 1 SOPS operators to focus on other 
areas

• Future Work:

• Incorporating the output from Lumos into operational workflows 

• Continued research to train a Reinforcement Learning agent to better solve the environment for the Lumos 
Collection Recommender

• Extend Lumos capabilities to other sensor systems (e.g. add mount angle state to Anomaly Detector for 
ground-based sensors)

• Model and incorporate other systematic biases into the Lumos Anomaly Detector

• Conjunction assessment management for large constellations (e.g. Starlink)—consolidated states and 
covariances


