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ML Solutions for Satellite Operations

Creating a novel ML analysis tool to characterize and analyze 
satellite operations:

• Time dependent trends for telemetry consists of 
• Time dependent function that can predict the near future behavior
• Standard deviations for given training periods.

• Vs. statistical collections of data in short periods

• Data monitoring by comparing the data values with predictions of time dependent trends
• Time dependent trends provide tight data bounds that are highly sensitive to deviations of predictions of time dependent trends

• Vs. static limit monitoring

• Anomaly detections and characterizations that provide direct insights into root causes of 
anomalies
• Greatly reduces turnaround time in resolving anomalies

• Vs. manual troubleshooting in current satellite operations.

• Capture signatures of normal satellite operations in telemetry datasets
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Common Architectural Model
• All ML solutions for satellite operations follow the same ML processes and same functionalities.

• Satellites with different orbit may have different algorithm implementations.

• The data training process obtains time dependent trends for each datasets and detects outliers in datasets
• Clustering process analyzes data-training outputs to evaluate data quality and detects anomalies.

Dynamic monitoring 
compares the values of 

an incoming dataset 
with its predictions for 
anomaly detections in 
real or near real time
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Data Patterns and Trainings of Satellite 
Telemetry

Data patterns in satellite datasets are based on orbital characteristics
• Data patterns for datasets with the same orbital characteristics, such as Low Earth Orbit (LEO), should be similar.
• ML algorithms for satellite telemetry are based on orbital characteristics

Data patterns in satellite datasets have both orbital (short-term) and seasonal 
(long-term) patterns

• Perform data training daily so that training outputs to be more adaptive to seasonal changes. 

Data patterns in satellite datasets are diverse.
• No one-size-fits-all ML model

Datasets in OPS environments general contain outliers (or data pattern changes) 
that could distort data training outcomes.

• Data Training processes not only need to obtain accurate data models but also detect data pattern changes

5



© 2022 by ASRC Federal. Published by The Aerospace Corporation with permission

Operationalize ML Solutions for Satellite 
Operations
Developing a ML application with following system requirements

• Scalability
• handle 103~104 or more datasets for a space mission.

• ML Processing Efficiency:
• ML data training and analysis need to be completed in minutes rather than hours or days.

• Flexibility
• Allows an ensemble of algorithms for telemetry datasets
• An algorithm for a specific dataset is determined by its pattern complexity and noise level.

• Rapid deployment:
• Provide 80% of ML solution, and 20% of customizations
• Standard APIs for telemetry data inputs and satellite telemetry database inputs.

• Extensibility:
• A Common ML Framework covers the full life cycle of space missions with different orbits
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Incremental Training Operation Concepts
ML operations are running in periodic sessions.

• Data training and clustering processes are running consecutively in each session.
The model parameters generated in previous session are used as inputs for current sessions.

• Changes in data patterns are small from one session to the next.
• Changes in model parameters are small increments.
• Data retraining of models from previous sessions are much more efficient.

• Critical for the data training of neural networks in OPS environments
Session overlaps in training period ensures stability of data training outcome
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Iterative Data Training
Common Data Training process for all ML algorithms

• Removes distortions due to the presence of outliers
• Detects the data pattern changes in data sets.

Input training sets must cover multi-orbit periods
• Pattern changes in one orbit are detected by the pattern differences in multiple orbits.

8

Iterative Training:
• Associate each data point with a data quality flag 〖𝒅𝒅𝒒𝒒𝒇𝒇〗_𝒊𝒊

initialized to 1

• Data training generates time dependent trend {𝒇𝒇_𝒋𝒋 (𝒕𝒕,𝑾𝑾),𝝈𝝈_𝒋𝒋 }

• Outlier detection detects outliers and update data quality flags 
for each data point

• Perform data training again with updated data quality flags
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Scalable and Extensible Component 
Architecture
• Separate the common services and infrastructure from the mission specific algorithm components
• ML algorithms for data training and clustering are treated as plugin and play components with 

standard API.
• Provides flexibility to select pattern specific algorithms for datasets.
• Multi-thread processes in data trainings
• Global services through standard API:

• Database, Global configuration, and event message.

9

Common Infrastructure:
• Component Container 
• Data Input
• Training Output IO
• Data Archive:

• Time series database
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Algorithm Components and ML Database
Two Types of Components:

• ML Model Components:
• Two subcomponents: inference and data training
• Implements factory design pattern.
• Data pattern specific.

• Clustering components: 
• Mission specific.

Component registry:
• Binding algorithm name with class objects.
• Provides API to retrieve an algorithm component for a given algorithm name

ML database contains mission specific information needed for data training
• Data definition:

• Mapping the TLM hierarchy in a satellite to ML hierarchy 
• 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⇔ 𝑔𝑔𝑔𝑔𝑚𝑚𝑠𝑠𝑔𝑔,𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑚𝑚𝑚𝑚𝑖𝑖𝑠𝑠𝑖𝑖

• ML attributes for data training and monitoring
• ML algorithm name and algorithm structure. 
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Rapid Application Deployment
Developing a ML algorithm repository that covers most data patterns in satellite 
datasets
Setup ML database for a mission:

• ML database for common telemetry:
• All missions have common subsystems, such as ephemeris, reaction-wheel, star-tracker, gyro, power, thermal, propulsion, and 

comm.
• Each mission may have its own naming conventions

• Mission specific telemetry: telemetry related to payload. 
• Map native telemetry database to ML database

Develop an interface between native TLM archive and InfluxDB
• A common interface for EGS ground system

Perform initial training to establish a baseline ML models used in the increment 
training in normal operations
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Summary
The solution has been extended to

• LEO and GEO satellite health and safety monitoring
• Instrument calibration monitoring
• Launch vehicle monitoring

The data training of satellite datasets involves both data training and detections 
of data pattern changes

• Implements iterative training approach.

System Requirements for a ML software tool for satellite operations:
• Scalability, Extensibility, ML processing efficiency, Flexibility, Rapid deployment.

The approach to address these requirements:
• Increment Data Training for ML processing efficiency.
• Component software architecture for scalability, extensibility, flexibility, and rapid deployment
• ML algorithm component repository and common ML database for rapid deployments.
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Quyanaq !
Thank you!
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