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Overview
Digital engineering supports integrating trusted AI/autonomy from inception through demonstration

AI/Autonomy Solution Architecting is part of the larger architecting and systems 

engineering effort that integrates the necessary AI/autonomy from inception to reduce cost, 

schedule, and technical risk

Architecting, system engineering, and modeling and simulation (M&S) iterate and inform each 

other in a spiral process

A solution team includes all relevant specialties serving iteratively throughout the process

Algorithm complexity drives/can be driven by software and hardware requirements and thus 

architectures within trade space and constraints

Conducting co-design within a digital engineering platform fosters rapid iteration and integration to 

develop and test prototypes

Demonstrating autonomous systems progressively reduces risk

Once an algorithm is selected, evidence must be collected to demonstrate trust

Digital engineering supports this entire process, from design to demonstrating trust

Image Credit: NASA OSIRIS-REx
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Specialty

Specialty Specialty

AI/autonomy 

Specialty

Integrating AI/autonomy from Inception Requires Building in Trust
Digital engineering supports building in trust, which requires careful design, development, & testing

Budgeting design, development, & testing for trust up front saves time & money

• Trusted AI/autonomy is a nascent area
– Researchers are working to develop best practices & standards, but no set 

of practices & standards has risen to widespread adoption yet

• Digital engineering tools, such as Cameo or GENESYS, support 

integrated co-design of trusted AI/autonomy

• The Aerospace Corporation has developed a trusted AI framework 

that maps to & includes other researchers’ trust frameworks

– Helps illustrate which information to collect for trust

• Digital engineering can instantiate the Aerospace trust 

framework—or any other trust framework—to  expand its tenets into 

test routines & metrics

• This presentation introduces the Aerospace AI/autonomy solution 

process and its digital engineering model

– The design use case is a convolutional neural network (CNN) used for 

pose estimation in on-orbit refueling within rendezvous proximity 

operations (RPO)

– Digital engineering supports concrete data, tests, & metrics

Identify AI/ 
Autonomy, 

TRLs

Software, 
Hardware 

Architectures

Develop, Test 
Prototypes

Demos

CONOPS

Considerations

Tailoring AI/autonomy solutions is key, 

digital engineering supports

concrete measures for trust

That needs AI-ML, 

such as a CNN

RPO needs 

computer vision

We’re refueling 

on orbit, so 

we’re doing 

RPO

We can design 

metrics & tests to 

show why to trust 

the CNN

We can design 

monitoring & 

control to maintain 

that trust

Designing both the 

solution & its trust tests 

from inception reduces 

cost, technical, & 

schedule risks

Solution 

Team
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The Aerospace AI/autonomy Solution Architecture Workflow
Digital engineering can model this process, which allows complexity requirements to drive design

Working definitions:

• Automation (AN): machine takes action where there is no uncertainty

• Autonomy (AY): machine makes decisions and takes action to manage uncertainty

• Machine Learning (ML): in a learning system, performance improves with experience

• Artificial Intelligence (AI): machine does what a human normally would do

What decisions must the system make?

TRL: Technology Readiness Level

Increasing 

Fidelity

Identify Type(s) 
of AI, Autonomy, 

ML with TRLs

Is autonomy, AI, ML needed? 

Or would automation suffice?

Develop & Size 
Software & Hardware 

Architectures

Develop & Test 
Prototypes using 

Digital Engineering

Demonstrate to 
Customer; 

Iterate as needed

Refine 
CONOPS

Assess Considerations:

Mission requirements, Data 
quantity, Data type, Comms 
latency, Uncertainty, Other 

factors, SME inputs

CONOPS: Concept of Operations



5

The Aerospace AI/autonomy Solution Architecture Workflow in GENESYS
The model instantiates the inner workings of the illustrated workflow concept



6

1: Refine CONOPS
The complexity required for the CONOPS and use cases drives the hardware/software design
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1.2: Outline High-level States, Behaviors 
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1.3: Create Activity Diagrams of Workflow, Roles, Responsibilities
Activity diagrams help illustrate the what, who, when, and why of AI/autonomy decisions & action
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1.4: Document Detailed CONOPS, Including Assumptions & Unhappy Path 
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2: Assess Considerations
Which factors constrain the solution? What does the trade space look like?
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2.1: Assess Update Considerations
These considerations influence design re which AI/autonomy, why, & where within the solution 
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3: Identify Type(s) of AI, Autonomy, ML with TRLs
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3.1: Identify Update Type(s) of AI, Autonomy, ML with TRLs
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4: Perform Trusted AI (‘‘MA for AI’’) Process 
This stage of the solution architecting process links to the Aerospace Trusted AI Framework

Stage AIF.0, the Aerospace Trusted AI Framework, is captured in a separate GENESYS model/project
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The Aerospace Trusted AI Framework, Modeled in GENESYS
Linked from 4: Perform Trusted AI (‘‘MA for AI’’) Process
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5: Develop and Size Software and Hardware Architecture
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5.1: Update Development & Sizing of Software & Hardware Architectures 
Trade studies inform this stage of the co-design process, 

in which AI/autonomy software is part of the larger software architecture 

and AI/autonomy hardware is part of the larger hardware architecture

The overall hardware architecture must support the entire software-hardware co-design
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6: Develop & Test Prototypes using Digital Engineering
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6.1: Develop Update & Test Prototypes using Digital Engineering
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6.1.1.1: Co-design Model-specific AI Software and Hardware
for computer vision in RPO
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6.1.1.2: Co-design Non-AI Software and Hardware, Including Sensors 
for maneuvering in RPO 
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7: Demonstrate Prototype to Customer; Iterate as Needed
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Simulation Based on the GENESYS Model
10 iterations 
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Summary 

• Digital engineering supports the process of designing integrated 

AI/autonomy as well as demonstrating that such solutions are 

worthy of trust

• Digital engineering can be used to model The Aerospace 

Corporation’s AI/autonomy Solution Architecting workflow

• This process uses the customer’s complexity requirements 

to drive the hardware-software co-design

• The trusted AI part of the process uses The Aerospace 

Corporation’s Trusted AI Framework

• This framework can be broken down into a Goal Structuring 

Notation, which can be instantiated in digital engineering for 

the design and demonstration of tests & metrics for trust

• The overall approach reduces cost, schedule, and technical risk by 

promoting a tailored AI/autonomy solution and helping customers 

and suppliers understand which information and evidence to 

collect to demonstrate that the resulting solution is trustworthy

Identify AI/ 
Autonomy, 

TRLs

Software, 
Hardware 

Architectures

Develop, Test 
Prototypes

Demos

CONOPS

Considerations

Trustworthy Solution

Concept

Model

Trust

Success
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• Introduction to The Aerospace Corporation’s Trusted AI Framework 

• How to begin collecting evidence for trusting a CNN to perform pose estimation

Additional Information



26

A Trusted AI Framework from Multiple Sources for Everyone
Explicit guidance on how to accomplish trust in relevant applications

This framework facilitates development of concrete requirements, test routines, and performance metrics 

that provide evidence for trust

Aerospace's Trusted AI 
Framework

National AI Initiative 
Office 

Characteristics of 
Trust

DoD's Principles of AI 
Ethics

AI Ethics Framework for 
the Intelligence 

Community

Deloitte’s 
Trustworthy 

AI Framework
IBM - Trusting AI

Microsoft 
Responsible 
and Trusted 

AI

U.S. Air 
Force 

Research 
Laboratory

Thread 1

Objective 
Specification

Ethical use of AI

Responsible, 
Traceable, 

Reliable

Testing, 
Version 
Control 
(builds, 
models, 
data), 

Stewardship

Governing the AI 
and the data; 

Documentation of 
Purpose, 

Parameters, 
Limitations, and 

Design Outcomes

Transparency 
and 

Accountability

Value 
Alignment

Ethics

Data Specification Privacy Privacy
Privacy and 

Security

Thread 2

Stability
Accuracy, Reliability

Robust/Reliable

Testing, Formal 
Methods

Confidence and 
Uncertainty
Adversarial 
Robustness

Robustness, Resilience Robust/Reliable Robustness

Interpretability
Explainability and 
Interpretability, 

Transparency

Transparency: 
Explainability and 

Interpretability

Transparent/
Explainable

Explainability Transparency Transparency

Familiarity

Fairness Fairness, Bias Mitigation Equitable
Mitigating 

Undesired Bias and 
Ensuring Objectivity

Fair/Impartial Fairness
Fairness, 

Inclusiveness

Thread 3
Monitoring Security

Governable 
Periodic Review Safe/Secure

Transparency and Accountability

Reliability and 
Safety

Reliability and 
Security

Control Safety
Human Judgement 
and Accountability

Responsible/
Accountable

Accountability

The Aerospace Trusted AI Framework maps to and covers key industry frameworks as well as additional trust frameworks, including the IDA 

Roadmap to Assurance (May 2020) and the NIST Workshop on AI Trustworthiness (Aug 2020) (not shown in the table below)
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Follow the AI Solution 
Architecture Process

Perform the model trade 
analyses

Select or design the 
model

Use the Trusted AI Framework to build 
trust in the model in from inception

Software and hardware 
architectures require 

iterative co-design to build 
in tests, monitoring, and 

control for trust

Model architecture requires 
optimization:
• Model size, Data sources
• Languages, Libraries
• Accuracy

• More complex model 
• Harder to train 
• More data, compute 

resources 
• Simplicity 

• Smaller model
• Fewer parameters 
• Less data, compute 

resources
• Might reduce 

overfitting
• Transfer learning vs 

learning from scratch

Use AI Solution 
Architecture inputs, e.g., 
trades, to select/design a 
feasible, appropriately 
sized model:
• CONOPS
• Considerations
• AI/Autonomy needs
• Model size
• Data needs and 

availability
• Data sources, 

quality, etc. (5Vs)
• Design of and 5V 

requirements for 
simulated data

• Ceiling analysis
• Hardware constraints

Trusted AI is a nascent field requiring explicit definitions 

into meaningful, generalizable, measurable, and testable

attributes. High consequence environments often entail high 

risk in mission criticality, algorithm complexity to meet mission 

criticality and complexity, and level of autonomy to meet issues 

like communications latency. data volume, etc.; technical, cost, 

and schedule risks must be quantified so they can be mitigated

Digital Engineering Supports Designing a Trusted Software Architecture
AI-ML models, such as CNNs, require specific trade analyses and trust

The notional selection of a model, such as a CNN, for this use case is only the beginning of a solution

Identify AI/ 
Autonomy, 

TRLs

Software, 
Hardware 

Architectures

Develop, Test 
Prototypes

Demos

CONOPS

Considerations
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How do you know you can trust an artificial neural network like a CNN?
Trusting neural networks is not a solved problem—there is no established set of tests or metrics
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• Convolutional neural networks (CNNs) 

are inspired by the mammalian brain 

and vision system
– CNNs use multiple hidden layers & thus 

qualify as deep neural networks (DNNs)

– DNNs are non-procedural and non-linear

• CNNs are well established and 

accepted for applications like computer 

vision, including pose estimation

• CNN architecture is feed forward, but 

testing for trust is not intuitively obvious

– Trade analyses are required to validate 

the best model for an application

– Metrics & tests must be developed

• The Aerospace trusted AI framework is 

a helpful starting point for developing 

these metrics & tests
Credit: 

https://arxiv.org/pdf/1812.01187.pdf

ResNet-50: 

a CNN Architecture 
for pose estimation
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The Solution Team can use   

a Goal Structuring Notation 

(GSN) visual representation 

to decompose the threads of 

the trusted AI framework into 

sub-threads

Trusting the Model via the Trusted AI Framework in Digital Engineering
Goal Structuring Notations help define what’s needed for actionable confidence that a model 

meets our objectives quantifiably and understandably over the system lifetime

Trusted AI Framework → GSN → Test Routines & Metrics →

Models & Simulations using Digital Engineering tools

Test routines 
that provide 
evidence to 
help argue 
for trusting 
this CNN

GSNs help systematically 

decompose the sub-

threads into “branches” of 

evidence to collect—

foundations for test routine 

“leaves”—to make the 

argument for trustAny drawing package 

(e.g., Visio) can be used 

to develop the GSN
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Threads of Trusted AI: Feature Tests
The example in this presentation focuses on a subset of trust features listed under Thread #2

For this demonstration, 

the GSN expounds on 

three features, or sub-

threads

• Stability

• Confidence and 

Uncertainty

• Interpretability

for modeling and 

simulation in 

GENESYS, a digital 

engineering 

environment

Stability: predictions are consistent when provided 

inputs fall within routine ranges

Confidence and Uncertainty: levels of confidence 

and uncertainty bounds can be discerned

Interpretability: users can easily understand the 

underlying causes of how responses were formulated
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Integrating the Satellite Pose CNN into Digital Engineering
GSN elements of interest

This is the GENESYS instantiation of the GSN that was developed using a drawing tool like Visio
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Digital Engineering: MBSE AI-ML Evaluation Flow
Elements of a GSN instantiated in GENESYS can access external code, like Python scripts

The Solution Team selected GENESYS for this use case, but other digital engineering environments should work

Model: Hierarchy

• Instructs analysis sequence

• Directs to relevant code repository

Code Repository

• Runs specified analysis

• Records results as intermediary

Model: Repository

• Records analysis results

• Checks against requirements
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Trusted AI Framework Example: Thread 2 Pose Estimation Trust Features
Can a ResNet-50 CNN estimate the pose of a client spacecraft well enough for trust?

• Satellite Pose Estimation

– Estimate the 3D position and orientation of a client spacecraft from 2D imagery

– Deep Learning with a ResNet-50 Convolutional Neural Network (CNN) from the literature

• Spacecraft Pose Estimation Dataset (SPEED)

– Created for Satellite Pose Estimation Challenge [Kisantal 2020]

– Stanford University, Space Rendezvous Laboratory (SLAB)

– Images of Tango spacecraft from PRISMA mission

– First publicly available dataset for spacecraft pose estimation

– Includes both synthetic and real images (mostly synthetic images)

• 12,000 training images (labeled); 2,998 synthetic test images (not labeled)
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Prototype Satellite Pose CNN
Overview

• Training a Regression Model in Python (train_dnn.py) (speed_resnet50.pth)

– ResNet-50 architecture [He 2015]

– Pose estimation is a regression problem (not classification)

• Estimate orientation q and position r

– Training objective (loss): minimize L1 error between truth and predictions

• Orientation L1 loss: 𝜃𝑞 = ො𝑞 − 𝑞

• Position L1 loss: 𝜃𝑟 = Ƹ𝑟 − 𝑟

• Combined L1 loss: 𝜃 = 15 × 𝜃𝑞 + 𝜃𝑟

• Implemented in Python with PyTorch machine learning library

– Model pre-trained with ImageNet weights [Russakovsky 2015]
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Stability
Predictions are consistent when provided inputs fall within routine ranges

• Evaluation (test_dnn.py)

– Evaluate performance statistics against an independent and identically distributed dataset

– Training dataset split: 80% training, 20% validation

• Model trained with 9,600 images from training set

• Model evaluated against 2,400 unseen images from training set

• Metrics

– L1 loss for both orientation and position

– Error metrics from Satellite Pose Estimation Challenge [Kisantal 2020]

• Orientation error: 𝑒𝑞 = 2 × arccos ො𝑞, 𝑞

• Normalized position error: 𝑒𝑟 = ൗƸ𝑟 −𝑟 2
𝑟 2

• Combined pose error: 𝑒 = 𝑒𝑞 + 𝑒𝑟
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Stability
How stable is the prototype CNN?

• Prototype Results

– Orientation L1 loss (𝜃𝑞): 0.3180

– Position L1 loss (𝜃𝑟): 0.3977

– Orientation error (𝒆𝒒): 1.1732

– Normalized position error (𝒆𝒓): 0.0936

– Combined pose error (𝑒): 1.2667 

• Comparison

– State-of-the-art (2020) comparison appears below:

Performance falls within Top 3 for

Satellite Pose Estimation Challenge 
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Confidence and Uncertainty
Levels of confidence and uncertainty bounds can be discerned

• Determining Out-of-distribution Inputs [Gawlikowski 2021]

– Performance metrics are only known for training/validation data

– Performance for data that deviate from training/validation is uncertain

– Method needed for determining if given images are close enough to training images

• Generative Adversarial Network (GAN) (train_gan.py) (speed_dcgan.pth)

– Deep Convolutional Generative Adversarial Network (DCGAN) [Radford 2016]

– Separate DNN with two sub-networks: a Generator & Discriminator

– Generator: creates similar (but fake) images

– Discriminator: determines if an image is real or fake
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Confidence and Uncertainty: the Role of Generators and Discriminators
The Discriminator helps identify Uncertainty by determining out-of-distribution inputs

• DCGAN Generator

– Attempts to create images similar to training set from random noise

– Note: these are low fidelity images

• DCGAN Discriminator

– Can classify images that are real (matching distribution) or fake (out of distribution)

– Evaluation results (test_gan.py)

• Identifying real training images (79% accuracy)

• Identifying fake generated images (66% accuracy)

Quantifying Confidence is challenging for regression problems like this: there’s no general assessment that a neural network’s 

prediction is “correct.” It is necessary to define margins of error and instead measure confidence relative to those margins of error.
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Interpretability
Users can easily understand the underlying causes of how responses were formulated

• Visualizing Focal Regions (viz_gradcam.py)

– Gradient-based Localization (Grad-CAM) [Selvaraju 2019]

– Highlights image regions that most significantly impacted predictions

– Enables users to reject predictions when focal regions seem suspect

Tools like this illustrate to human users where within the imagery the CNN focuses to make its determinations
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Demonstrating the Prototype Satellite Pose CNN in Python
Now the Solution Team can integrate the prototype CNN into digital engineering to illustrate the 

trusted AI framework and connect its tenets with requirements and other program artifacts

The dashboard with its slider bars facilitates Interpretability by showing the user how performance changes based 

on manual parameter adjustments

• Graphical Interface (run_demo.py)

– Enables user to process images in real time with Satellite Pose CNN

• Displays both “true” and “estimated” pose (computed in real time)

• Enables processing with DCGAN to determine “accept” / “reject”

• Enables Grad-CAM projection for interpretability

• Enables image transformations to observe robustness to change


