GSAW 2022

Earth Observing Data Distribution and Visualization Using the Cloud - Overview

<u>Author:</u> Jay Pennington

<u>Co-Authors:</u> Morgan Williams Will Coffey Spencer Drakontaidis Alan Christopher Phillip Jasper

February 23, 2022

Cloud Introduction

- Cloud technologies
 - On-demand resources that are managed for the user
 - "Running software on someone else's hardware"
- Cloud is being widely adopted by many industries
 - Tech, finance, manufacturing, automotive, healthcare, gaming, etc.
- Many vendor options available to government sector
 - Amazon Web Services (AWS)
 - Microsoft Azure
 - Google Cloud Platform (GCP)
 - IBM Cloud
 - Oracle Cloud

But...Why Cloud?

- Cloud services use virtual infrastructure
 - Resources can be deployed in real time on an as-needed basis
 - Rapid deployments allow for dynamic scaling of capacity to meet demand
 - Infrastructure can be treated as software through Infrastructure as Code (IaC)
 - Infrastructure can be managed remotely
- Customers should focus on competitive advantages
 - Software development offers competitive advantage, but related operations do not
 - Building, securing, and maintaining physical infrastructure
 - Use of cloud services allows developers to spend more time writing software
- New technologies are constantly being released
 - Exploration and experimentation leads to rapid innovation

Satellite Data Rebroadcast

- Mission: earth observing science data streaming
 - Data is collected, processed, and rebroadcast to end users
- Problem: both satellite and end user require dedicated antennas
 - Satellite rebroadcast and end user receiver antennas can be costly
- Hypothesis: processed data can be rebroadcast via the cloud
 - Remove rebroadcast antenna to reduce size, weight, and power on next-gen satellites
 - Remove the need for end users to procure and maintain receiver antennas
- Aerospace is building an AWS Cloud Pilot to replicate this chain of operations
 - Working to identify risks or concerns with cloud approach to data distribution

- GOES-R Rebroadcast (GRB)
 - Data stream containing ABI, GLM, space environment, and solar data
 - GRB footprint covers large portions of the Western hemisphere
 - Users who have access to the GRB receiver antenna can capture this data
- GRB data uses
 - Users convert files to Network Common Data Format (NetCDF) files
 - NetCDF files can be used for scientific studies or converted into visualizations
- Aerospace is using GRB to demonstrate capabilities of cloud data distribution

Data Streaming Prototype Architecture

Monitor quality of data stream

- Goal:
 - Ensure data quality by measuring incoming GRB stream availability
- Capability:
 - Custom quality assurance (QA) tool tracks sequence count of packets
 - Non-sequential packets indicates packet loss has occurred
 - Tool does not currently account for out-of-order or duplicate packets
 - Tool can run in both cloud and on-premises environments
 - Tool can run at multiple points in the data stream to track quality

Delivering data to multiple users

- Goal:
 - Deliver incoming data packets to end users efficiently
 - Scale infrastructure for as many data streams or end users as needed
- Capability:
 - Amazon Managed Streaming for Apache Kafka (MSK)
 - Highly-scalable publish/subscribe (pub/sub) service commonly used for data transfer
 - Free and open-source Kafka technology provides portability between vendors
 - Users authenticate via Amazon Cognito to access stream

Benchmark latency and availability metrics

- Goal:
 - Develop software to measure availability and latency of data delivery via cloud
 - Measure cloud performance to understand adoption risks and concerns
- Capability:
 - Metrics collected, aggregated, and processed in real time for each GRB packet
 - Metrics streaming performed via Amazon MSK to simplify architecture

Delivering data in useful formats

- Goal:
 - Deliver pre-processed data to end user in a useful format
 - Leverage publicly available software commonly used by end users
- Capability:
 - University of Wisconsin's Community Satellite Processing Package (CSPP)
 - Common free and open-source Java application deployed by nearly all end users
 - Converts RF GRB streaming data into usable NetCDF files in real-time
 - Modified to convert non-RF GRB stream into useable NetCDF files in real-time

Delivering data in useful formats

- Goal:
 - Deliver pre-processed and processed data to end user in a useful format
 - Leverage cloud technologies to simplify data processing for end user
- Capability (future):
 - Deploy CSPP Java software into cloud infrastructure
 - Offer delivery of both GRB packets and NetCDF files to end users

Science Image Generation

- Goal:
 - Convert NetCDF files to visualizations
 - Use existing tools to create a sample of visualizations to verify data stream quality
- Capability (current):
 - University of Wisconsin's Sounder QuickLook tool
 - Free and open-source Python application uses NetCDFs to create PNG images
 - End users must manually convert NetCDF files to visualizations

Science Image Generation

- Goal:
 - Convert NetCDF files to visualizations in real-time
 - Use existing tools to create all real-time visualizations to verify data stream quality
- Capability (future):
 - Investigate 3rd party tools that automatically convert NetCDF files to visualizations
 - Tools automatically convert NetCDF files into static and animated visualizations
 - Commonly used free and open-source tools: McIDAS-V, SIFT
 - Other commonly used tools: McIDAS-X, IDL

Lessons Learned

- Cloud offers a vast number of technologies
 - Explore and experiment to find the best solutions
- DevSecOps processes improve security and quality
 - Holistic integration of developers, security experts, and operations experts
 - CI/CD pipeline allows for rapid, repeatable, automated deployments
- Important to have accurate tools to measure data quality
 - Undetected upstream quality issues caused baffling issues with visualization
- Important to understand ease of use vs portability
 - Managed services make it easier to create and use infrastructure
 - Each managed service has a different level of vendor lock in
 - Find balance between decreased management vs increased vendor lock in

Pilot Next Steps

- Conduct capability demonstrations
 - Prove power/utility using visualizations, quality measurements, and benchmarking
 - Real-time cloud distribution end-to-end capability
 - Measurements of long-term data delivery performance
 - Performance during increased scale of end users
- Evaluate follow-on capabilities and priorities
 - Additional imagery processing via 3rd party toolsets (McIDAS-V, IDL, etc.)
 - Distribution of additional incoming data streams

Thank You!