Efficient out-of-distribution detection for reliable deployment of DNNs

Apoorva Sharma

joint work with Somrita Banerjee, Navid Azizan, and Marco Pavone

Approved for public release

Machine learning tools can provide key capabilities for space ground systems

DNNs can provide **data-driven** predictions in real-time on highdimensional perceptual inputs

Machine learning tools can provide key capabilities for space ground systems

DNNs can provide **data-driven** predictions in real-time on highdimensional perceptual inputs

However, they can suffer from **poor reliability** in conditions that deviate from training data.

Ensuring reliable operation of DNNs requires detecting and reacting to changing conditions.

Deployment

How can we efficiently detect anomalous conditions during operation?

How can we efficiently retrain DNN models to adapt to changing conditions?

Outline

- Introduction
- Efficient anomaly detection for pre-trained DNNs
 - Problem Setup
 - SCOD: Sketching Curvature for Out-of-Distribution Detection
 - Insights and Results
- Leveraging out-of-distribution detection in the data-collection pipeline

Defining "out-of-distribution"

Distance based:

How far away is a new data point to training data?

Intuitive, easy to implement

What distance metric to use? Need to hold on to training data at test time

6

Defining "out-of-distribution"

Distance based:

How far away is a new data point to training data?

Distribution based:

Can we compare test-time data against the training data distribution?

Defining "out-of-distribution"

Distance based:

How far away is a new data point to training data?

Distribution based:

Can we compare test-time data against the training data distribution?

Functional uncertainty:

What outputs are still likely for a test-time input given the training data?

Accounts for input-output relationship Useful for reasoning about adaptation

How to quantify functional uncertainty?

Bayesian methods offer a principled approach to quantifying functional uncertainty

Basic formula:

- I. Propose a broad prior over the space of functions mapping inputs to outputs.
- 2. Given training data, compute posterior in function space.
- 3. Treat inputs with high posterior uncertainty as anomalous.

Bayesian methods offer a principled approach to quantifying functional uncertainty

Basic formula:

- Propose a broad prior over the space of functions mapping inputs to outputs.
- 2. Given training data, compute posterior in function space.
- 3. Treat inputs with high posterior uncertainty as anomalous.

Bayesian methods offer a principled approach to quantifying functional uncertainty

Basic formula:

- Propose a broad prior over the space of functions mapping inputs to outputs.
- 2. Given training data, compute posterior in function space.
- 3. Treat inputs with high posterior uncertainty as anomalous.

How can we reason about functional uncertainty for real-time anomaly detection?

Good functional prior

Need a task-aligned prior over functions on high-dimensional sensor input

Efficient posterior estimation and representation

Want a memory-efficient posterior representation which summarizes the training data

Efficient predictive uncertainty computation

Need to compute functional uncertainty at test inputs with low latency

Outline

- Introduction
- Efficient anomaly detection for pre-trained DNNs
 - Problem Setup
 - SCOD: Sketching Curvature for Out-of-Distribution Detection
 - Insights and Results
- Leveraging out-of-distribution detection in the data-collection pipeline

SCOD: Sketching Curvature for OOD detection

SCOD addresses these requirements through careful design decisions

Good functional prior

Efficient posterior estimation and representation

Efficient predictive uncertainty computation

- Leverage existing task DNN to create parametric prior
- Low-rank posterior representation via matrix sketching
- Sampling-free predictive uncertainty computation

SCOD quantifies uncertainty in a DNN by applying Bayesian analysis to a surrogate linear model.

Wide and aligned prior:

Leverages task-specific structure of existing, pre-trained DNN

Tractable posterior computation: Low-rank approximation via matrix sketching mitigates memory bottlenecks

Efficient predictive uncertainty estimation: Linearized model allows for direct posterior predictive uncertainty computation, without Monte-Carlo sampling

SCOD: Sketching Curvature for OoD Detection

Algorithm Overview

DNN with optimized weights	Output dis (e.g. Gaussian,		
$\mathbf{z} = f(\mathbf{x}, \mathbf{w}^*)$	$p(\mathbf{y})$		
Linearize model	$\mathbf{z} \approx f(\mathbf{x}, \mathbf{w}^*)$		
Offline \cdot Compute Posterior Distribution on $\delta \mathbf{W}$	$p(\delta \mathbf{w} \mid \mathcal{D}) =$		
Online .			
Compute posterior predictive distribution for linearized model	$p(\mathbf{z} \mid \mathbf{x}, \mathcal{D}) =$		
and overall uncertainty	$Unc(\mathbf{x} \mid \mathcal{D}) =$		

score

listribution n, Categorical)

Training Dataset

 $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^M$ \mathbf{Z}

 $) + J_f(\mathbf{x}, \mathbf{w}^*) \cdot \delta \mathbf{w}$

 $= \mathcal{N}(\delta \mathbf{w}; \mathbf{0}, \Sigma_{\mathbf{w}})$

 $= \mathcal{N}(\mathbf{z}; f(\mathbf{x}, \mathbf{w}^*), J_f(\mathbf{x}, \mathbf{w}^*) \Sigma_{\mathbf{w}} J_f(\mathbf{x}, \mathbf{w}^*)^{\top})$ = Entropy $\left[\int p(\mathbf{y} \mid \mathbf{z})p(\mathbf{z} \mid \mathbf{x}, \mathcal{D})d\mathbf{z}\right]$

SCOD: Sketching Curvature for OoD Detection

Estimating and representing the posterior covariance Σ_w

Analytic expression for posterior covariance involving only local curvature of DNN (Gauss Newton matrix)

$$\Sigma_{\mathbf{w}} = \left(\sigma_0^{-2}\right)$$

Fisher information matrix of output distribution

Represent in terms of low-rank factors $U \in \mathbb{R}^{N \times d}, \lambda \in \mathbb{R}^{d}$

Never need to realize full NxN matrix

Outline

- Introduction
- Efficient anomaly detection for pre-trained DNNs
 - Problem Setup
 - SCOD: Sketching Curvature for Out-of-Distribution Detection
 - **Insights and Results**
- Leveraging out-of-distribution detection in the data-collection pipeline

Trained on simulated data from clear weather, early morning

Tested on varying weather conditions and times of day

Key questions:

- How SCOD's uncertainty estimate behave on out-of-distribution settings?
- How does the uncertainty estimate correlate with model error?

Cross-track error

20

21

22

Quantitative Results

Performance in classifying OoD inputs (AUROC)

Compared against:

- **Naive:** use base DNN for uncertainty estimate
- General post-training uncertainty quantification methods:
 - Local Ensemble [Madras et al., 2019] Low-rank Hessian approx. computed via 2nd-order autodifferentiation
 - **KFAC Laplace** [Ritter et al., 2018] Layer-wise Kronecker-factored Hessian approx., sampled posterior at test time
- **Deep Ensemble** [Lakshminarayanan et al., 2018] (retrain K=5 identical models)

Quantitative Results

On a wide range of regression and classification tasks

	Experiment	In Dist		Out of Dist		Network
regression	Wine Properties -> Quality	Red wines		White wines		3 Layer MLP (11.4k params)
	Rotated MNIST Image -> Angle	で	2.	5	\mathcal{N}	3 Layer CNN (16.9k params)
	TaxiNet Image -> CTE and Heading		1			ResNet18 (11.2M params)
classification	Binary MNIST Image -> 0/1	ļ	0	9	Ĩ	3 Layer CNN (14.3k params)
	MNIST Image -> Digit	3	4	()	Ĩ	3 Layer CNN (15.5k params)
	CIFAR 10 Image -> Class	~	Les Co		25	DenseNet (7M params)

Quantitative Results

Across a suite of regression and classification tasks, SCOD outperforms

25

Sketching Curvature for Efficient OOD Detection for Deep Neural Networks

26

SCOD was presented at UAI 2021, available on arXiv:2102.12567

Code is available at https://github.com/StanfordASL/SCOD/

Outline

- Introduction
- Efficient anomaly detection for pre-trained DNNs
 - Problem Setup
 - SCOD: Sketching Curvature for Out-of-Distribution Detection
 - Insights and Results
- Leveraging out-of-distribution detection in the data-collection pipeline

27

Future work: Efficient OOD detection for data labeling

Case study: ExoRomper dataset

From an image, use a trained model to estimate pose (location + attitude) of a spacecraft

OOD detection can identify areas where current **DNN is not competent**

Training dataset

Deployment

29

Copyright by the authors. Published by The Aerospace Corporation with permission.

Can we use OOD information to select inputs to store and label for retraining?

Deployment

Goal: improve DNN performance while being cognizant of the costs of data storage and labeling

30

Copyright by the authors. Published by The Aerospace Corporation with permission.

Somrita Banerjee

Ed Schmerling

Navid Azizan

Marco Pavone