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Machine learning tools can provide key 
capabilities for space ground systems 
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Out-of-Distribution

Machine learning tools can provide key 
capabilities for space ground systems 
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DNNs can provide data-driven 
predictions in real-time on high-
dimensional perceptual inputs

However,  they can suffer from 
poor reliability in conditions that 
deviate from training data.

Observation PredictionObservation

Untrustworthy
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Ensuring reliable operation of DNNs requires 
detecting and reacting to changing conditions.
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How can we efficiently detect 
anomalous conditions during 
operation?

How can we efficiently retrain DNN 
models to adapt to changing 
conditions?

Training data Deployment OOD OOD OOD OOD
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Defining “out-of-distribution”

Distance based: 

How far away is a new data point to training data?

6

What distance metric to use?

OOD

In dist.

Need to hold on to training data at test time

Intuitive, easy to implement
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Defining “out-of-distribution”

Distance based: 

How far away is a new data point to training data?

Distribution based: 

Can we compare test-time data against the training 
data distribution?
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p(x)

OOD In dist.

How to model distribution over high-dimensional inputs?
How to evaluate correlated test-time inputs?

x

Parametric distribution 
can summarize large 

dataset
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Defining “out-of-distribution”

Distance based: 

How far away is a new data point to training data?

Distribution based: 

Can we compare test-time data against the training 
data distribution?

Functional uncertainty: 

What outputs are still likely for a test-time input 
given the training data?
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In dist. OOD

y

x

Accounts for input-output relationship
Useful for reasoning about adaptation

How to quantify functional uncertainty?



Copyright by the authors.  Published by The Aerospace Corporation with permission.

Bayesian methods offer a principled approach 
to quantifying functional uncertainty
Basic formula:

1. Propose a broad prior over 
the space of functions mapping 
inputs to outputs.

2. Given training data, compute 
posterior in function space.

3. Treat inputs with high posterior 
uncertainty as anomalous.
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Basic formula:

1. Propose a broad prior over the 
space of functions mapping inputs 
to outputs.

2. Given training data, compute 
posterior in function space.

3. Treat inputs with high posterior 
uncertainty as anomalous.
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Bayesian methods offer a principled approach 
to quantifying functional uncertainty
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Basic formula:

1. Propose a broad prior over the 
space of functions mapping inputs 
to outputs.

2. Given training data, compute 
posterior in function space.

3. Treat inputs with high 
posterior uncertainty as 
anomalous.
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In dist. OODOOD

Bayesian methods offer a principled approach 
to quantifying functional uncertainty
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How can we reason about functional 
uncertainty for real-time anomaly detection?

Good functional prior
Need a task-aligned prior over functions on high-dimensional sensor input

Efficient posterior estimation and representation
Want a memory-efficient posterior representation which summarizes the training data

Efficient predictive uncertainty computation
Need to compute functional uncertainty at test inputs with low latency
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Observation
PredictionDNN

Downstream 
Decision Making 

Logic
Outcome
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SCOD: Sketching Curvature for OOD detection
SCOD addresses these requirements through careful design decisions

Good functional prior

Leverage existing task DNN to create parametric prior

Efficient posterior estimation and representation

Low-rank posterior representation via matrix sketching

Efficient predictive uncertainty computation

Sampling-free predictive uncertainty computation
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Gaussian prior

SCOD quantifies uncertainty in a DNN by applying 
Bayesian analysis to a surrogate linear model.
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𝐽!(𝑥, 𝑤∗)

𝛿𝑤

𝐳
=

= 𝑓(𝐱,𝐰)
𝐳

Wide and aligned prior:
Leverages task-specific structure of existing, 
pre-trained DNN

Tractable posterior computation:
Low-rank approximation via matrix 
sketching mitigates memory bottlenecks

Efficient predictive uncertainty estimation:
Linearized model allows for direct 
posterior predictive uncertainty 
computation, without Monte-Carlo 
sampling

Linearize w.r.t. 𝐰
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SCOD: Sketching Curvature for OoD Detection
Algorithm Overview

16

𝐳 ≈ 𝑓(𝐱,𝐰∗) + 𝐽)(𝐱,𝐰∗) ⋅ 𝛿𝐰

𝑝(𝛿𝐰 ∣ 𝒟) = 𝒩(𝛿𝐰; 𝟎, Σ𝐰)

𝑝(𝐳 ∣ 𝐱, 𝒟) = 𝒩(𝐳; 𝑓(𝐱,𝐰∗), 𝐽)(𝐱,𝐰∗)Σ𝐰𝐽)(𝐱,𝐰∗)*)

Linearize model

Compute Posterior Distribution 
on 𝛿𝐰

Compute posterior predictive distribution 
for linearized model

and overall uncertainty 
score

Unc(𝐱 ∣ 𝒟) = Entropy ∫ 𝑝(𝐲 ∣ 𝐳)𝑝(𝐳 ∣ 𝐱, 𝒟)𝑑𝐳

𝑝(𝐲 ∣ 𝐳)

Output distribution
(e.g. Gaussian, Categorical)

𝐳 = 𝑓(𝐱,𝐰∗)

DNN with 
optimized weights

𝒟 = {(𝐱+ , 𝐲+)}+,-.
Training Dataset

Offline

Online
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SCOD: Sketching Curvature for OoD Detection
Estimating and representing the posterior covariance Σ𝐰
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Σ𝐰 = 𝜎/01𝐼 + ∑
+,-

.
𝐽)(𝐱+ , 𝐰∗)*𝐹𝐳(𝐳+)𝐽)(𝐱+ , 𝐰∗)

0-Analytic expression for posterior 
covariance involving only local 

curvature of DNN
(Gauss Newton matrix)

Σ𝐰 ≈ 𝜎/1 𝐼 − 𝑈𝐷𝑈*
Woodbury Matrix Identity

Never need to realize full NxN matrix

Fisher information matrix of output distribution 

Σ𝐰 ≈ 𝜎"#$𝐼 + 𝑈Λ𝑈% #&

Sketching based eigenvalue decomposition

Represent in terms of low-rank factors

𝑈 ∈ ℝ!×# , 𝜆 ∈ ℝ#
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Qualitative Case Study
Visuomotor control of autonomous aircraft taxiing
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DNN

Trained on simulated data from clear weather, early morning

Tested on varying weather conditions and times of day

Key questions: 
- How SCOD’s uncertainty estimate behave on out-of-distribution settings?
- How does the uncertainty estimate correlate with model error?

Cross-track error
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Qualitative Case Study
Visuomotor control of autonomous aircraft taxiing
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Qualitative Case Study
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Qualitative Case Study
Visuomotor control of autonomous aircraft taxiing
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Quantitative Results
Performance in classifying OoD inputs (AUROC)

Compared against:

• Naïve: use base DNN for uncertainty estimate

• General post-training uncertainty quantification methods:

• Local Ensemble [Madras et al., 2019] 
Low-rank Hessian approx. computed via 2nd-order autodifferentiation

• KFAC Laplace [Ritter et al., 2018] 
Layer-wise Kronecker-factored Hessian approx., sampled posterior at test time

• Deep Ensemble [Lakshminarayanan et al., 2018] (retrain K=5 identical models)

23
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Quantitative Results
On a wide range of regression and classification tasks
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Quantitative Results
Across a suite of regression and classification tasks, SCOD outperforms 
methods applicable to pre-trained models in terms of AUROC and runtime
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Sketching Curvature for Efficient OOD 
Detection for Deep Neural Networks

SCOD was presented at UAI 2021, available 
on arXiv:2102.12567

Code is available at 
https://github.com/StanfordASL/SCOD/
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Gaussian prior𝐽!(𝑥, 𝑤∗)

𝛿𝑤

𝐳
=

= 𝑓(𝐱,𝐰)
𝐳

Linearize w.r.t. 𝐰

https://arxiv.org/abs/2102.12567
https://github.com/StanfordASL/SCOD/
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Future work: Efficient OOD detection for data labeling
Case study: ExoRomper dataset
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From an image, use a 
trained model to estimate 
pose (location + attitude) 
of a spacecraft
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OOD detection can identify areas where current 
DNN is not competent
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Training dataset

Deployment

OoD OoD OoD OoD OoD
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Can we use OOD information to select inputs 
to store and label for retraining?

30

Deployment

OoD: 
Earth 

background

OoD: 
Earth background

OoD:
Lens flare

OoD: 
Lens flare

OoD: 
Lens flare

Flagged to 
request label

Flagged to 
request label

Goal:  improve DNN performance while being 
cognizant of the costs of data storage and labeling
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Questions?

Navid Azizan Marco PavoneSomrita Banerjee Ed Schmerling
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