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OpenC3 COSMOS Intro
Who, What, When, Where

• OpenC3 (Open Command, Control, and Communication) COSMOS is brought 
to you by OpenC3, Inc.

• Founded by Ryan Melton and Jason Thomas - the authors of Ball Aerospace 
COSMOS

• COSMOS consists of a suite of applications to control embedded systems

• Over 17 years of heritage - Initial development in 2006, open sourced in 2014, 
re-architected in 2020, released independently as OpenC3 COSMOS in 2022.

• COSMOS is TRL-9 per NASA’s Small Satellite State of the Art Report

• openc3.com and github.com/OpenC3/cosmos

http://openc3.com
https://github.com/OpenC3/cosmos


Architecture!



Telemetry Processing Architecture
Containerized Microservices Designed to Scale Horizontally

Kubernetes used for container orchestration across a cluster of 
nodes. For this experiment we used Google’s GKE and Amazon’s 
EKS.

Telemetry Processing Chain Broken down into the following 
containers per target (satellite): Interface, Raw Packet Logging, 
Decommutation, Decom Packet Logging, Data Reduction

Redis Cluster is the primary data store. Used as key/value store for 
configuration and current value table. Also used for pub/sub bus, 
and streaming message bus between containers. 

Bucket Storage used for configuration, logged data, and as a static 
web server.  For this experiment either Google Cloud Storage or 
Amazon S3.



Scalability Knobs
• Kubernetes Cluster:

• Number of Nodes

• vCPU/RAM/Disk per Node

• Network Performance per Node

• Redis Cluster:

• Number of Primary Nodes

• Number of Replica Nodes

• 16384 Hash Slots

Scale it
Up!

• COSMOS:

• Microservice Independence

• Packets Per Container



Satellite Load Simulation

Open Source at: https://github.com/OpenC3/openc3-cosmos-load-sim

Each Satellite Simulated with:

• 100 cmds / 100 tlm packets

• 25 items per cmd packet

• 105 items per tlm packet

• 100 Tlm Packets each 200 bytes at 1 Hz

• 100 * 200 = 20,000 bytes/sec = 160 Kbits/sec

• 10,500 Items Decommed Per Sec

• 200 Packets logged per second (Raw/Decom)



Let’s Run It!



Initial Test Setup

Google’s GKE

• 4 Nodes @ e2-standard-4

• 4 vCPUs, 16GB of RAM

• x86

• Redis Cluster 3 Primary / 3 Replica

• Google Cloud Storage

• $0.54 per hour

Amazon EKS

• 4 Nodes @ t4g.xlarge

• 4 vCPUs, 16GB of RAM

• Arm64 Graviton2, up to 5Gbps

• Redis Cluster 3 Primary / 3 Replica

• Amazon S3

• $0.54 per hour



Initial Test Results
• kubectl top nodes – Shows CPU and RAM utilization per node

• Started showing an imbalance across the 4 nodes in our cluster

• At 15 satellites – One node had reached 95% CPU utilization and decommutated
data was delayed for targets mapped to that node

• Observed problems:

• Our Kubernetes cluster was not evenly allocating CPU utilization across nodes 
based on actual usage

• Our simulated targets are using about 60% vCPU each. Opportunity for 
optimization?

• More internal metrics needed to let us know that things are starting to struggle



Initial Lessons Learned
• Problem: Kubernetes allocates containers to nodes based on the resource requests 

per container.  If your containers don’t request any CPU/Mem explicitly, then 
Kubernetes basically assumes they don’t use any resources. 

• Response: Need to at least guess at CPU/Mem requests for every container so that 
Kubernetes will spread them out across nodes evenly.  Added a 100m / 100Mi 
resource request to each of our target containers.

• Problem: Difficult to detect when things start to fall behind

• Response: Added Prometheus support, and new metrics for key aspects of the 
telemetry processing pipeline.  Most important new metrics: 

• Latency from data being placed on a stream to being read off

• Decommutation time

• Redis IOPS



Next and Final Test Setups

Amazon EKS

• 4 Nodes @ c7g.8xlarge

• 32 vCPUs, 64GB of RAM

• Arm64 Graviton3 / 15Gbps Network

• Redis Cluster 3 Primary / 3 Replica

• Amazon S3

• $4.64 per hour

Amazon EKS

• 4 Nodes @ c7g.8xlarge

• 32 vCPUs, 64GB of RAM

• Arm64 Graviton3 / 15Gbps Network

• Redis Cluster 15 Primary / 15 Replica

• Amazon S3

• $4.64 per hour



Next and Final Test Results
• Somewhere between 50 and 75 satellites, the 3 node Redis cluster started to be 

overwhelmed.  

• Redis connect errors showing up in logs, and delayed processing

• Increased the 3 node Redis cluster to 15 nodes for final test.

• Successfully scaled up to 150 satellites with everything running smoothly

• At 160 satellites was still functioning but showing some variability

• Somewhere between 160 and 170 satellites became unable to keep up

• Noticed uneven allocation of satellites across Redis cluster nodes



Metrics Scaling up to 170 Satellites



Lessons Learned and Areas for Future 
Improvement
• Redis cluster sharding assigns each satellite to a random Redis cluster node.

• Random assignment eventually leads to unbalanced shards

• Need to add Redis cluster balancing / scaling functionality to our Admin interface in 
future versions

• AWS initially limited our account to 32 vCPUs.  Had to request an increased limit to 
run these tests.  Granted in about 2 hours.

• AWS limits each node to 234 pods/containers. Scaling beyond 200 satellites would 
require adding more Kubernetes nodes



Summary and Conclusions
• The OpenC3 COSMOS architecture can successfully 

scale to support 100s of satellites

• Demonstrated up to 160 satellites

• Having the right metrics really matters when scaling

• Demonstrated:

• 16,000 telemetry packets per second

• 1,680,000 telemetry points per second

• 3,200,000 Mbytes/sec, 25,600,000 Mbits/sec



QUESTIONS
?

For more info, check us out at openc3.com
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