
Scaling a C2
System to
Hundreds of
Satellites
Using Observability
Technologies to Identify
Performance Bottlenecks
Ryan Melton
Jason Thomas

© 2023 by OpenC3, Inc.
Published by The Aerospace Corporation with
permission
Approved for Public Release

OpenC3 COSMOS Intro
Who, What, When, Where

• OpenC3 (Open Command, Control, and Communication) COSMOS is brought
to you by OpenC3, Inc.

• Founded by Ryan Melton and Jason Thomas - the authors of Ball Aerospace
COSMOS

• COSMOS consists of a suite of applications to control embedded systems

• Over 17 years of heritage - Initial development in 2006, open sourced in 2014,
re-architected in 2020, released independently as OpenC3 COSMOS in 2022.

• COSMOS is TRL-9 per NASA’s Small Satellite State of the Art Report

• openc3.com and github.com/OpenC3/cosmos

http://openc3.com
https://github.com/OpenC3/cosmos

Architecture!

Telemetry Processing Architecture
Containerized Microservices Designed to Scale Horizontally

Kubernetes used for container orchestration across a cluster of
nodes. For this experiment we used Google’s GKE and Amazon’s
EKS.

Telemetry Processing Chain Broken down into the following
containers per target (satellite): Interface, Raw Packet Logging,
Decommutation, Decom Packet Logging, Data Reduction

Redis Cluster is the primary data store. Used as key/value store for
configuration and current value table. Also used for pub/sub bus,
and streaming message bus between containers.

Bucket Storage used for configuration, logged data, and as a static
web server. For this experiment either Google Cloud Storage or
Amazon S3.

Scalability Knobs
• Kubernetes Cluster:

• Number of Nodes

• vCPU/RAM/Disk per Node

• Network Performance per Node

• Redis Cluster:

• Number of Primary Nodes

• Number of Replica Nodes

• 16384 Hash Slots

Scale it
Up!

• COSMOS:

• Microservice Independence

• Packets Per Container

Satellite Load Simulation

Open Source at: https://github.com/OpenC3/openc3-cosmos-load-sim

Each Satellite Simulated with:

• 100 cmds / 100 tlm packets

• 25 items per cmd packet

• 105 items per tlm packet

• 100 Tlm Packets each 200 bytes at 1 Hz

• 100 * 200 = 20,000 bytes/sec = 160 Kbits/sec

• 10,500 Items Decommed Per Sec

• 200 Packets logged per second (Raw/Decom)

Let’s Run It!

Initial Test Setup

Google’s GKE

• 4 Nodes @ e2-standard-4

• 4 vCPUs, 16GB of RAM

• x86

• Redis Cluster 3 Primary / 3 Replica

• Google Cloud Storage

• $0.54 per hour

Amazon EKS

• 4 Nodes @ t4g.xlarge

• 4 vCPUs, 16GB of RAM

• Arm64 Graviton2, up to 5Gbps

• Redis Cluster 3 Primary / 3 Replica

• Amazon S3

• $0.54 per hour

Initial Test Results
• kubectl top nodes – Shows CPU and RAM utilization per node

• Started showing an imbalance across the 4 nodes in our cluster

• At 15 satellites – One node had reached 95% CPU utilization and decommutated
data was delayed for targets mapped to that node

• Observed problems:

• Our Kubernetes cluster was not evenly allocating CPU utilization across nodes
based on actual usage

• Our simulated targets are using about 60% vCPU each. Opportunity for
optimization?

• More internal metrics needed to let us know that things are starting to struggle

Initial Lessons Learned
• Problem: Kubernetes allocates containers to nodes based on the resource requests

per container. If your containers don’t request any CPU/Mem explicitly, then
Kubernetes basically assumes they don’t use any resources.

• Response: Need to at least guess at CPU/Mem requests for every container so that
Kubernetes will spread them out across nodes evenly. Added a 100m / 100Mi
resource request to each of our target containers.

• Problem: Difficult to detect when things start to fall behind

• Response: Added Prometheus support, and new metrics for key aspects of the
telemetry processing pipeline. Most important new metrics:

• Latency from data being placed on a stream to being read off

• Decommutation time

• Redis IOPS

Next and Final Test Setups

Amazon EKS

• 4 Nodes @ c7g.8xlarge

• 32 vCPUs, 64GB of RAM

• Arm64 Graviton3 / 15Gbps Network

• Redis Cluster 3 Primary / 3 Replica

• Amazon S3

• $4.64 per hour

Amazon EKS

• 4 Nodes @ c7g.8xlarge

• 32 vCPUs, 64GB of RAM

• Arm64 Graviton3 / 15Gbps Network

• Redis Cluster 15 Primary / 15 Replica

• Amazon S3

• $4.64 per hour

Next and Final Test Results
• Somewhere between 50 and 75 satellites, the 3 node Redis cluster started to be

overwhelmed.

• Redis connect errors showing up in logs, and delayed processing

• Increased the 3 node Redis cluster to 15 nodes for final test.

• Successfully scaled up to 150 satellites with everything running smoothly

• At 160 satellites was still functioning but showing some variability

• Somewhere between 160 and 170 satellites became unable to keep up

• Noticed uneven allocation of satellites across Redis cluster nodes

Metrics Scaling up to 170 Satellites

Lessons Learned and Areas for Future
Improvement
• Redis cluster sharding assigns each satellite to a random Redis cluster node.

• Random assignment eventually leads to unbalanced shards

• Need to add Redis cluster balancing / scaling functionality to our Admin interface in
future versions

• AWS initially limited our account to 32 vCPUs. Had to request an increased limit to
run these tests. Granted in about 2 hours.

• AWS limits each node to 234 pods/containers. Scaling beyond 200 satellites would
require adding more Kubernetes nodes

Summary and Conclusions
• The OpenC3 COSMOS architecture can successfully

scale to support 100s of satellites

• Demonstrated up to 160 satellites

• Having the right metrics really matters when scaling

• Demonstrated:

• 16,000 telemetry packets per second

• 1,680,000 telemetry points per second

• 3,200,000 Mbytes/sec, 25,600,000 Mbits/sec

QUESTIONS
?

For more info, check us out at openc3.com

	Scaling a C2 System to Hundreds of Satellites
	OpenC3 COSMOS Intro
	Architecture!
	Telemetry Processing Architecture
	Scalability Knobs
	Satellite Load Simulation
	Let’s Run It!
	Initial Test Setup
	Initial Test Results
	Initial Lessons Learned
	Next and Final Test Setups
	Next and Final Test Results
	Metrics Scaling up to 170 Satellites
	Lessons Learned and Areas for Future Improvement
	Summary and Conclusions
	Slide Number 16

