
1
© 2023 The Aerospace Corporation

Architectural Considerations 
and Selected Technologies for 
Machine Learning at the Edge

Joseph Fuerst, Dhruv Bohra, 
Elisabeth Nguyen and Ann Chervenak

The Aerospace Corporation

February 28, 2023

Approved for public release. OTR 2023-00251.



2

Motivation: Support Machine Learning at the Edge

• Background: Edge Computing

– A distributed computing paradigm that utilizes both Cloud data centers and devices at 
the edge of the network (e.g., systems, sensors, routers, and satellites)

– Edge computing can improve the performance of analytics by utilizing the resources of 
edge devices, including storage, networking and computation, to:

• Perform data collection, analysis and filtering on the edge device, without requiring 
data to be transferred to the Cloud data center

• Eliminate or reduce latency and network traffic between edge devices and the 
cloud data center, since less data is sent from the edge to the cloud

• Enable faster local decision-making at the edge

• Support intermittent connectivity or disconnected operations between edge devices 
and cloud data centers

• Our focus: Enabling Machine Learning Applications to run at the edge

– Explore architectural considerations for deploying ML models to space-based and 
ground-based edge devices

– Explore training and inference tradeoffs for edge devices



3

Why Machine Learning (ML) at the Edge?

• Data preprocessing and filtering
– Need less Size, Weight and Power (SWaP) for 

storage and downlink

• Onboard tip and cue
– Coordinate different sensors for edge data fusion

• Faster reaction times
– Support autonomous control

• Resilience
– Less reliance on ground input



4

Edge ML Challenges

• Traditional training is not feasible on edge 
devices

– Don’t have storage capacity for big data

• Inference often needs to be optimized
– Shallower networks, lower-precision models

• Edge devices may need to be deployed on 
specific frameworks

– Model needs to be ported to available framework

• MLOps pipeline may need to include ground
– Not just training, but validation and retraining, may 

require storage and processing capacity only 
available on the ground



5

Edge ML Challenges

• Traditional training is not feasible on edge 
devices

– Don’t have storage capacity for big data

• Inference often needs to be optimized
– Shallower networks, lower-precision models

• Edge devices may need to be deployed on 
specific frameworks

– Model needs to be ported to available framework

• MLOps pipeline may need to include ground
– Not just training, but validation and retraining, may 

require storage and processing capacity only 
available on the ground



6

Offline vs. Online Learning

Well-defined situations:
Offline Learning

Dynamic/uncertain situations:
Online Learning

• Training done infrequently, in 
batches

• Humans label training data offline

• Processing capacity and storage 
dominate; training and retraining are 
likely centralized

• Training done continuously at the edge

• May not be feasible for humans to 
label all training data

• May need multiple cooperating sensors 
to capture full operational context

• Security and/or privacy concerns may 
limit where data can be distributed

• Bandwidth to move data at the edge 
dominates



7

Centralized, Distributed, and Federated Learning

Centralized Learning:
• Data is brought to a central location
• Training is done at that location

Distributed Learning:
• Training is done at multiple locations
• Each location has a predefined subset of all training data

Federated Learning:
• Training is done at/near the edge



8

Federated Learning
Edge-Distributed, Private Learning on Heterogeneous Devices

• Server calculates and distributes a global model
• Edge sensors calculate individual sets of model updates

– Trains model in multiple iterations at different sites
– Removes need to pool data into a single location
– Sensor subsets may be aggregated at the edge
– Possible to implement deeper privacy preserving techniques

• Edge sensors send model
updates to server to
recompute global model

– Model stays roughly
synchronized

• Primarily for use with
unsupervised and semi-
supervised learning

– Process for labeling data
does not work well with
federated approach

Global 
model 

updates

Edge devices

Se
rv

er
Local weight updates

Org. A

Org. B



9

Federated Online Learning for Responsive Edge ML

• Federated learning advantages
– Low network bandwidth needs
– Maintains data privacy
– Enables devices to participate in training intermittently, when conditions permit

• Online learning advantages
– Much more responsive to environmental context (does not require collecting and 

batching new data for retraining)
– Training occurs on data streams – does not require large amount of storage

• Disadvantages
– Only some ML problems can be solved by online learning
– Models may be less accurate
– More vulnerable to data skew and/or bad actors
– Federated learning causes slower model convergence, and models may fail to 

converge altogether



10

Edge ML Challenges

• Traditional training is not feasible on edge 
devices

– Don’t have storage capacity for big data

• Inference often needs to be optimized
– Shallower networks, lower-precision models

• Edge devices may need to be deployed on 
specific frameworks

– Model needs to be ported to available framework

• MLOps pipeline may need to include ground
– Not just training, but validation and retraining, may 

require storage and processing capacity only 
available on the ground



11

Trained Networks Are Initially Inefficient
All trained neural networks can be optimized

• It is possible to accomplish the following, while closely maintaining baseline 
accuracy

– Decrease inference latency, compressed size, and memory usage
– Increase inference throughput and accelerator compatibility



12

Recompiling Models for SWaP-Constrained Edge HW

• TensorFlow Lite (TFL): toolchain for destructively optimizing edge models
– Shrinks model size and computational demand at the cost of accuracy
– Packaged with a TensorFlow pipe, allowing for high compatibility with models natively 

trained in TensorFlow
– Widely used; supported by many different AI accelerators

• Destructive techniques used:
– Weight pruning – setting some model weights to zero
– Weight clustering – replacing a cluster of weights with a single centroid weight
– Precision quantization – rounding or removal of decimals
– Range quantization – down-converting the bit-count of weights (e.g., 32-bit to 8-bit)

• Other similar toolchains exist, e.g., PyTorch

• Often re-optimization is a prerequisite to using an accelerator
– E.g., Vitis AI requires Vitis 8-bit quantization
– E.g., Google’s Coral TPU-based products assume TFL optimization



13

Recompiling Models for SWaP-Constrained Edge HW
Neural Network optimized by TFL's pruning and quantization techniques



14

Optimizing Model Transmission

• Above techniques are destructive
– Require model changes; may result in loss of accuracy

• If a drop in model accuracy is unacceptable, alternative methods include:
– Break model up into weights, sends only weights over the network, build architecture 

on the edge device
• Negligible improvements vs. sending the entire model

– Break model into chunks of arbitrary size
• Enables model transmission over slower or intermittent links
• Still requires substantial bandwidth to transmit entire model

• Non-destructive methods do not substantially save on bandwidth, and do not 
address size, weight and power limitations of edge processing hardware

– For edge models, destructive methods are likely to be needed
– Particularly if edge models require frequent updates

Non-destructive optimization techniques for large models



15

Edge ML Challenges

• Traditional training is not feasible on edge 
devices

– Don’t have storage capacity for big data

• Inference often needs to be optimized
– Shallower networks, lower-precision models

• Edge devices may need to be deployed on 
specific frameworks

– Model needs to be ported to available framework

• MLOps pipeline may need to include ground
– Not just training, but validation and retraining, may 

require storage and processing capacity only 
available on the ground



16

XPU Challenges
Accelerator compatibility and heterogeneous compute

• Unlike in commercial datacenters, not all edge processing systems are x86 hosts paired 
with enterprise-class GPUs
• Many processor categories exist, often requiring their own runtimes, such as:

• Accelerator choice(s) based on mission needs, but optimally redeveloping and deploying a 
model using each toolchain is increasingly difficult

Growing need for inter-platform multi-vendor model translation and runtime build tools

Accelerator Category Example Runtime

Vision Processing Unit (VPU) Intel's MyriadX OpenVINO

Accelerated Processing Unit (APU) AMD Vega 10 ROCm

Graphics Processing Unit (GPU) ARM Mali LLVM-based

Tensor Processing Unit (TPU) Google Coral EdgeTPU

Deep Learning Processor Unit 
(DPU)

Xilinx AI accelerator FPGA 
IP core

Vitis AI

Neuromorphic Processing Unit 
(NPU)

Intel Loihi NxSDK/Lava



17

Recompiling models to run on specific Edge HW
Simplified Apache TVM workflow diagram

• Multiple forks and related projects are supported by academic and industry organizations
– µTVM: Supports baremetal C code (no operating system)
– TVM Runtime: Hardware target agnostic C++ runtime for TVM-optimized models
– TVM VTA: Configurable TVM-enabled FPGA deep learning accelerator and interface

Load with "Relay"
ingest trained model and translate 

into intermediate representation (IR)

Tune with "Ansor"
non-destructively reoptimize neural 

network graph and schedule

Compile with "CodeGen"
connect to a backend and generate 

the compiled artifact

1

2

3

ingest from any popular framework
and convert to high-level expression

pass mathematical IR to AutoTVM;
uses ML to discover optimal graph

synthesize runtime binary using 
code generator of choice

Apache TVM allows for
execution on target HW



18

Edge ML Challenges

• Traditional training is not feasible on edge 
devices

– Don’t have storage capacity for big data

• Inference often needs to be optimized
– Shallower networks, lower-precision models

• Edge devices may need to be deployed on 
specific frameworks

– Model needs to be ported to available framework

• MLOps pipeline may need to include ground
– Not just training, but validation and retraining, may 

require storage and processing capacity only 
available on the ground



19

MLOps Pipeline

• Experience with operational ML has shown that models 
typically need to be updated

– In both the offline and online learning cases
– Additional data may become available to better train the 

model
– The operating context may change
– The model may need to be deployed in new or expanded 

operating contexts

• Updates are often multi-step activities, occurring in a 
“pipeline”

• Pipelines can be complex, and automation is helpful for 
both consistency and ease of use

model 
deployment

model 
validation

model 
evaluation

model 
training

data 
preparation

data 
validation

data 
extraction



20

Deploying Models

• Updates take two main forms:
– Model structure, e.g., the neural network itself
– Model parameters, e.g., neural network node weights

• Deployment approach depends on type of update and 
model server

– Model server could range from a simple front end to a 
production environment (e.g., PyTorch)

– Parameter update may be achievable by sending new 
parameters to a running model server

– Model structure update requires restarting the server 

• Updates are significantly faster and easier if the models 
are containerized

– Keeps necessary libraries, etc. together with the models to 
avoid version mismatches

– Host operating system + container runtime are designed to 
easily start/stop models

• Orchestrator (Kubernetes) can automatically deploy 
updated containers onto available hardware



21

Deploying Models to the Edge

• At present, ML and orchestration are both predominantly done in 
the cloud

• We analyzed tools and methods to standardize model 
deployment to edge devices in a way that preserves portability 
with cloud deployments

• Focused on Kubernetes for container orchestration
– Use Kubernetes to move cloud-built container onto edge-based 

hardware

• Assessed the following focus areas:
– Dealing with intermittent connection loss
– Portability of cloud-native applications
– Size considerations for restricted/constrained environments
– Compatibility with specialized edge processors

• Tested functionality with simple ML applications



22

Cloud/Edge Cluster Deployment Methods

More overhead: networking, management, 
monitoring separate clusters

None of the benefits to intra-cluster 
communication

More overhead on edge devices to support 
control plane management

Multi-cluster
Single cluster at each edge location

Single cluster
Edge devices included as nodes

Less overhead: cloud handles control 
plane and management

More overhead: must 
handle downtime, syncing, etc. for 
intermittently connected edge nodes



23

KubeEdge

• Extends orchestration capabilities to hosts at Edge

• Enables Kubernetes native API at the edge

• Bidirectional communication and coordination between cloud and edge nodes

• Autonomous operation of edge nodes even during disconnection from cloud

• Low resource requirements, memory footprint ~70MB

• Native support of x86, ARMv7, ARMv8

• MQTT communication protocol handles IoT workloads and unreliable networks

• Findings
– Lack of maturity at the time we worked with it
– Continued development may improve usability

• Example use cases found here: 
https://github.com/kubeedge/examples

https://github.com/kubeedge/examples


24

k3s

• Kubernetes variant that helps in accelerating edge computing

• Small size project (<100MB)

• Creates an edge cluster fully separate from the cloud cluster but still able to 
execute the same payloads

• Consists of a server and agent connected through Tunnel Proxy
– K3s components operate in a single process, unlike k8s.

• Quick (<90s) spinup time for clusters

• Findings
– K3s is ideal for edge situations with high latency or extremely limited 

storage/compute/memory requirements



25

MLOps Pipeline

• Multi-stage activities such as those in the MLOps 
pipeline are often built into containers

– Enables process to be updated on the fly

• Several tools also exist to specifically leverage 
orchestrators to perform MLOps

• Kubeflow: tool that uses orchestrator to manage 
pipeline

– End-to-end MLOps architecture
– Becoming a widely used standard for deploying ML 

payloads on the cloud

• We investigated KubeFlow for edge compatibility

model 
deployment

model 
validation

model 
evaluation

model 
training

data 
preparation

data 
validation

data 
extraction



26

Kubeflow for the Edge

• Specific concerns for the edge:
– Limited bandwidth may necessitate sending a compiled 

model or partial model rather than full updates each 
time

– If updates are routine, MLOps solution supporting edge 
hardware should be identified

• Findings:
– Not conscious of compute/memory/storage constraints
– Not suitable for direct deployment with edge-friendly 

Kubernetes (k3s, KubeEdge)

• Potential alternative:
– Use Kubeflow to update and validate model
– Separately, use k3s or KubeEdge to deploy completed 

model
– I.e., eject payload from the Kubeflow pipeline as a final 

step
model 

deployment

model 
validation

model 
evaluation

model 
training

data 
preparation

data 
validation

data 
extraction



27

Summary of Findings for Edge ML Architectures

• Training
– Offline learning still likely to be done in the cloud
– Online learning may be more effectively done at the edge
– Federated learning takes advantage of edge device locality and preserves data privacy

• Inference
– Models often need to be optimized to run on edge hardware
– Various frameworks provide capabilities for this
– Optimization may result in loss of precision

• Frameworks
– Embedded accelerators are heterogeneous
– Often require model compilation on specific framework directed to target device

• MLOps
– Edge MLOps often requires a combination of cloud and edge capabilities
– Edge-friendly Kubernetes variants can facilitate model deployment to edge
– May need to execute most of the MLOps pipeline in the cloud and then deploy to edge 

as a separate step



28

References: Papers/Links

• FedAvg paper: https://arxiv.org/abs/1602.05629
– McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized 

data." Artificial intelligence and statistics. PMLR, 2017.

• FedProx paper: https://arxiv.org/abs/1812.06127
– Li, Tian, et al. "Federated optimization in heterogeneous networks." Proceedings of Machine Learning 

and Systems 2 (2020): 429-450.

• q-FedAvg paper: https://arxiv.org/abs/1905.10497
– Li, Tian, et al. "Fair resource allocation in federated learning." arXiv preprint arXiv:1905.10497 (2019).

• per-FedAvg paper: 
https://proceedings.neurips.cc/paper/2020/file/24389bfe4fe2eba8bf9aa9203a44cdad-
Paper.pdf

– Fallah, Alireza, Aryan Mokhtari, and Asuman Ozdaglar. "Personalized federated learning with 
theoretical guarantees: A model-agnostic meta-learning approach." Advances in Neural Information 
Processing Systems 33 (2020): 3557-3568.

• Federated Multi-Task Learning: https://arxiv.org/abs/1705.10467
– Smith, Virginia, et al. "Federated multi-task learning." Advances in neural information processing 

systems 30 (2017).

• Advances and Open Problems in Federated Learning: https://arxiv.org/abs/1912.04977
– Kairouz, Peter, et al. "Advances and open problems in federated learning." Foundations and Trends in 

Machine Learning 14.1–2 (2021): 1-210.

https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1812.06127
https://arxiv.org/abs/1905.10497
https://proceedings.neurips.cc/paper/2020/file/24389bfe4fe2eba8bf9aa9203a44cdad-Paper.pdf
https://arxiv.org/abs/1705.10467
https://arxiv.org/abs/1912.04977


29

References: Papers/Links (cont.)

• Towards Federated Learning at Scale
– Bonawitz, Keith, et al. "Towards federated learning at scale: System design." Proceedings of 

Machine Learning and Systems 1 (2019): 374-388.

• Improving situational awareness with collective artificial intelligence over knowledge 
graphs

– Jiang, Meng. "Improving situational awareness with collective artificial intelligence over knowledge 
graphs." Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications II. 
Vol. 11413. SPIE, 2020.

• In-Edge AI: Intelligentizing Mobile Edge Computing, Caching and Communication by 
Federated Learning

– Wang, Xiaofei, et al. "In-edge ai: Intelligentizing mobile edge computing, caching and 
communication by federated learning." IEEE Network 33.5 (2019): 156-165.

• Adaptive Federated Learning in Resource Constrained Edge Computing Systems
– Wang, Shiqiang, et al. "Adaptive federated learning in resource constrained edge computing 

systems." IEEE Journal on Selected Areas in Communications 37.6 (2019): 1205-1221.

• Model poisoning attacks against distributed machine learning systems

– Tomsett, Richard, Kevin Chan, and Supriyo Chakraborty. "Model poisoning attacks against 
distributed machine learning systems." Artificial Intelligence and Machine Learning for Multi-
Domain Operations Applications. Vol. 11006. SPIE, 2019.

https://proceedings.mlsys.org/paper/2019/file/bd686fd640be98efaae0091fa301e613-Paper.pdf
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11413/114130J/Improving-situational-awareness-with-collective-artificial-intelligence-over-knowledge-graphs/10.1117/12.2556746.full?SSO=1
https://ieeexplore.ieee.org/abstract/document/8770530
https://ieeexplore.ieee.org/abstract/document/8664630
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11006/110061D/Model-poisoning-attacks-against-distributed-machine-learning-systems/10.1117/12.2520275.full


30

References: Papers/Links (cont.)

• Mitchell, Nicole, et al. "Optimizing the communication-accuracy trade-off in federated 
learning with rate-distortion theory." (https://arxiv.org/abs/2201.02664) (2022).

List of papers by topic
• https://github.com/chaoyanghe/Awesome-Federated-Learning

Federated Learning Frameworks:

• Tensorflow Federated: https://www.tensorflow.org/federated

• PySyft by OpenMined: https://github.com/OpenMined/PySyft

• Flower: https://flower.dev/

https://arxiv.org/abs/2201.02664
https://github.com/chaoyanghe/Awesome-Federated-Learning
https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqbWlFM215TVFKeU9XbmhJWDZIQnRVS0lUdVJ1UXxBQ3Jtc0tsaWl1c3pOaEFVdkpXenlMUUMyemJYMlM0cjFzRlZrR1ZNLVg1b3liaDVtNjc1RlpQSlFtWmZlQUVBdG1UUWc0alE5SHNuMGJ1T2xwV3lCMGptVURMX3FDNUw4eXVZUXlLb2ZtejFOX0pwaW1IcmRGZw&q=https%3A%2F%2Fwww.tensorflow.org%2Ffederated&v=nBGQQHPkyNY
https://github.com/OpenMined/PySyft
https://flower.dev/



